#Rank features by importance
# lvq - Learning Vector Quantization (LVQ) model
# varImp -used to estimate the variable importance
# ensure results are repeatable
set.seed(7)
# prepare training scheme
control <- trainControl(method="repeatedcv", number=10, repeats=3)
# train the model
model1 <- train(tr_status~ gh_num_pr_comments + gh_num_issue_comments + gh_pull_req_num
+ gh_sloc +
gh_files_added + gh_files_deleted , data=resultCP, method="lvq",
preProcess="scale",
trControl=control)
model2 <- train(tr_status~ gh_team_size + gh_num_commit_comments + gh_test_churn +
gh_src_churn +
gh_files_modified + gh_tests_added , data=resultCP, method="lvq",
preProcess="scale",
trControl=control)
model3 <- train(tr_status~ gh_tests_deleted + gh_src_files + gh_doc_files + gh_other_files +
gh_test_lines_per_kloc + gh_test_cases_per_kloc + gh_description_complexity,
data=resultCP, method="lvq", preProcess="scale", trControl=control)
# estimate variable importance
importance <- varImp(model, scale=FALSE)
# summarize importance
print(importance)
# plot importance
plot(importance)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.