assign_model_inputs: Assign inputs for various modeling algorithms within nmecr....

View source: R/assign_model_inputs.R

assign_model_inputsR Documentation

Assign inputs for various modeling algorithms within nmecr. Passed in as the argument model_input_options for all models in nmecr

Description

Assign inputs for various modeling algorithms within nmecr. Passed in as the argument model_input_options for all models in nmecr

Usage

assign_model_inputs(
  timescale_days = NULL,
  has_temp_knots_defined = FALSE,
  equal_temp_segment_points = TRUE,
  temp_segments_numeric = 6,
  temp_knots_value = c(40, 55, 65, 80, 90),
  initial_breakpoints = c(50, 65),
  regression_type = c("TOWT", "TOW", "SLR", "HDD-CDD Multivariate Regression", "HDD-CDD",
    "HDD Regression", "HDD", "CDD Regression", "CDD", "Three Parameter Cooling", "3PC",
    "Three Parameter Heating", "3PH", "Four Parameter Linear Model", "4P",
    "Five Parameter Linear Model", "5P", "Mean"),
  occupancy_threshold = 0.65,
  day_normalized = FALSE
)

Arguments

timescale_days

Numeric corresponding to the timescale for weighting function - used in demand predictions. Default to NULL for energy predictions.

has_temp_knots_defined

Logical specifying whether the temp_knots are pre-defined or will be calculated by the algorithm. Default: FALSE. If set to FALSE, variables 'equal_tem_segment_points' and 'temp_segments_numeric' are used to calculate the temperature knots.#'

equal_temp_segment_points

Logical specifying structure of temperature segments: equal number of points vs. equal segment length. Default: TRUE Only used if has_temp_knots_defined is set to FALSE.

temp_segments_numeric

Numeric specifying number of temperature segments. Default: 6 Only used if has_temp_knots_defined is set to FALSE.

temp_knots_value

Vector specifying manually defined temperature knots. Only used if has_temp_knots_defined is set to TRUE.

initial_breakpoints

Vector indicating the initial breakpoints (changepoints) to regress over.

regression_type

Character string indicating the modeling algorithm to run

occupancy_threshold

a fractional value for calculating occupancy schedule of the training dataset

day_normalized

Logical specifying whether the monthly models should be day normalized or not. Default: FALSE (not day-normalized)

Value

a list specifying the chosen algorithm inputs


kW-Labs/nmecr documentation built on May 6, 2024, 9:28 p.m.