Adds encoded columns to dataframes to be linked
1 2 3 4 5 6 7 8 9 | encode(dfA, dfB, cols.encoder, encoder.model.path = NULL,
encoder.trainA = NULL, encoder.trainB = NULL, dim.latent = 8,
dim.encode = 64, dim.decode = 64, max.length = 12,
num.encode.layers = 2, num.decode.layers = 2, batch.size = 32,
epochs = 500, lr = 5e-04, validation.split = 0.2,
save.dir = "~/blocking_models/", reconstruct = TRUE,
reconstruct.n = 5, reconstruct.display = 20, earlystop = FALSE,
earlystop.patience = 10, tensorboard = FALSE,
tensorboard.runid = as.character(Sys.time()), verbose = 2)
|
dfA |
DataframeA |
dfB |
DataframeB |
cols.encoder |
Encoder cols |
encoder.model.path |
Model path if no train |
encoder.trainA |
trainA |
encoder.trainB |
trainB |
dim.latent |
Dim latent |
dim.encode |
Dim encode |
dim.decode |
Dim decode |
max.length |
Max length |
num.encode.layers |
encode layers |
num.decode.layers |
decode layers |
batch.size |
batch size |
epochs |
Epochs |
lr |
Learning rate |
validation.split |
validation split |
save.dir |
Save directory |
reconstruct |
reconstruct |
reconstruct.n |
How many reconstructions to show |
reconstruct.display |
After many epochs to show reconstructions |
earlystop |
TRUE if stopping early when validation loss is no longer decreasing, if FALSE then train for all epochs |
earlystop.patience |
Number of epochs to wait while validation loss does not decrease before stopping training early |
tensorboard |
TRUE if tensorboard metrics are to be recorded. Logs are recorded in the /tmp/ directory |
tensorboard.runid |
Unique identifier for the run to separate tensorboard logs |
verbose |
Verbosity level for training output, 0 = silence, 1 = minimal, 2 = verboses |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.