Code
foreach(it = hour_checkin_gen(x, "timestamp")) %do% {
it
}
Output
[[1]]
# A tibble: 3 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 01:00:00 32576
2 335 2020-04-19 01:47:16 15722
3 335 2020-04-19 01:59:59 15722
[[2]]
# A tibble: 4 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 02:00:00 15722
2 335 2020-04-19 02:20:13 32576
3 335 2020-04-19 02:55:41 32576
4 335 2020-04-19 02:59:59 32576
[[3]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 03:00:00 32576
2 335 2020-04-19 03:59:59 32576
[[4]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 04:00:00 32576
2 335 2020-04-19 04:59:59 32576
[[5]]
# A tibble: 3 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 05:00:00 32576
2 335 2020-04-19 05:06:50 15637
3 335 2020-04-19 05:59:59 15637
[[6]]
# A tibble: 4 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 06:00:00 15637
2 335 2020-04-19 06:04:48 15722
3 335 2020-04-19 06:40:09 15637
4 335 2020-04-19 06:59:59 15637
[[7]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 07:00:00 15637
2 335 2020-04-19 07:59:59 15637
[[8]]
# A tibble: 3 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 08:00:00 15637
2 335 2020-04-19 08:39:31 15722
3 335 2020-04-19 08:59:59 15722
[[9]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 09:00:00 15722
2 335 2020-04-19 09:59:59 15722
[[10]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 10:00:00 15722
2 335 2020-04-19 10:59:59 15722
[[11]]
# A tibble: 3 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 11:00:00 15722
2 335 2020-04-19 11:27:57 32617
3 335 2020-04-19 11:59:59 32617
Code
foreach(it = hcg(x, "timestamp")) %do% {
it
}
Output
[[1]]
# A tibble: 3 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 01:00:00 32576
2 335 2020-04-19 01:47:16 15722
3 335 2020-04-19 01:59:59 15722
[[2]]
# A tibble: 4 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 02:00:00 15722
2 335 2020-04-19 02:20:13 32576
3 335 2020-04-19 02:55:41 32576
4 335 2020-04-19 02:59:59 32576
[[3]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 03:00:00 32576
2 335 2020-04-19 03:59:59 32576
[[4]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 04:00:00 32576
2 335 2020-04-19 04:59:59 32576
[[5]]
# A tibble: 3 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 05:00:00 32576
2 335 2020-04-19 05:06:50 15637
3 335 2020-04-19 05:59:59 15637
[[6]]
# A tibble: 4 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 06:00:00 15637
2 335 2020-04-19 06:04:48 15722
3 335 2020-04-19 06:40:09 15637
4 335 2020-04-19 06:59:59 15637
[[7]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 07:00:00 15637
2 335 2020-04-19 07:59:59 15637
[[8]]
# A tibble: 3 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 08:00:00 15637
2 335 2020-04-19 08:39:31 15722
3 335 2020-04-19 08:59:59 15722
[[9]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 09:00:00 15722
2 335 2020-04-19 09:59:59 15722
[[10]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 10:00:00 15722
2 335 2020-04-19 10:59:59 15722
[[11]]
# A tibble: 3 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 11:00:00 15722
2 335 2020-04-19 11:27:57 32617
3 335 2020-04-19 11:59:59 32617
[[12]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 12:00:00 32617
2 335 2020-04-19 12:59:59 32617
[[13]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 13:00:00 32617
2 335 2020-04-19 13:59:59 32617
[[14]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 14:00:00 32617
2 335 2020-04-19 14:59:59 32617
[[15]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 15:00:00 32617
2 335 2020-04-19 15:59:59 32617
[[16]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 16:00:00 32617
2 335 2020-04-19 16:59:59 32617
[[17]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 17:00:00 32617
2 335 2020-04-19 17:59:59 32617
[[18]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 18:00:00 32617
2 335 2020-04-19 18:59:59 32617
[[19]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 19:00:00 32617
2 335 2020-04-19 19:59:59 32617
[[20]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 20:00:00 32617
2 335 2020-04-19 20:59:59 32617
[[21]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 21:00:00 32617
2 335 2020-04-19 21:59:59 32617
[[22]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 22:00:00 32617
2 335 2020-04-19 22:59:59 32617
[[23]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-19 23:00:00 32617
2 335 2020-04-19 23:59:59 32617
[[24]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 00:00:00 32617
2 335 2020-04-20 00:59:59 32617
[[25]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 01:00:00 32617
2 335 2020-04-20 01:59:59 32617
[[26]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 02:00:00 32617
2 335 2020-04-20 02:59:59 32617
[[27]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 03:00:00 32617
2 335 2020-04-20 03:59:59 32617
[[28]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 04:00:00 32617
2 335 2020-04-20 04:59:59 32617
[[29]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 05:00:00 32617
2 335 2020-04-20 05:59:59 32617
[[30]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 06:00:00 32617
2 335 2020-04-20 06:59:59 32617
[[31]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 07:00:00 32617
2 335 2020-04-20 07:59:59 32617
[[32]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 08:00:00 32617
2 335 2020-04-20 08:59:59 32617
[[33]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 09:00:00 32617
2 335 2020-04-20 09:59:59 32617
[[34]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 10:00:00 32617
2 335 2020-04-20 10:59:59 32617
[[35]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 11:00:00 32617
2 335 2020-04-20 11:59:59 32617
[[36]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 12:00:00 32617
2 335 2020-04-20 12:59:59 32617
[[37]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 13:00:00 32617
2 335 2020-04-20 13:59:59 32617
[[38]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 14:00:00 32617
2 335 2020-04-20 14:59:59 32617
[[39]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 15:00:00 32617
2 335 2020-04-20 15:59:59 32617
[[40]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 16:00:00 32617
2 335 2020-04-20 16:59:59 32617
[[41]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 17:00:00 32617
2 335 2020-04-20 17:59:59 32617
[[42]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 18:00:00 32617
2 335 2020-04-20 18:59:59 32617
[[43]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 19:00:00 32617
2 335 2020-04-20 19:59:59 32617
[[44]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 20:00:00 32617
2 335 2020-04-20 20:59:59 32617
[[45]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 21:00:00 32617
2 335 2020-04-20 21:59:59 32617
[[46]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 22:00:00 32617
2 335 2020-04-20 22:59:59 32617
[[47]]
# A tibble: 2 x 3
id timestamp location
<int> <dttm> <int>
1 335 2020-04-20 23:00:00 32617
2 335 2020-04-20 23:59:59 32617
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.