tests/testthat/_snaps/hour-checkin-iter.md

Hour checkin iter works.

Code
  foreach(it = hour_checkin_gen(x, "timestamp")) %do% {
    it
  }
Output
  [[1]]
  # A tibble: 3 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 01:00:00    32576
  2   335 2020-04-19 01:47:16    15722
  3   335 2020-04-19 01:59:59    15722

  [[2]]
  # A tibble: 4 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 02:00:00    15722
  2   335 2020-04-19 02:20:13    32576
  3   335 2020-04-19 02:55:41    32576
  4   335 2020-04-19 02:59:59    32576

  [[3]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 03:00:00    32576
  2   335 2020-04-19 03:59:59    32576

  [[4]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 04:00:00    32576
  2   335 2020-04-19 04:59:59    32576

  [[5]]
  # A tibble: 3 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 05:00:00    32576
  2   335 2020-04-19 05:06:50    15637
  3   335 2020-04-19 05:59:59    15637

  [[6]]
  # A tibble: 4 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 06:00:00    15637
  2   335 2020-04-19 06:04:48    15722
  3   335 2020-04-19 06:40:09    15637
  4   335 2020-04-19 06:59:59    15637

  [[7]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 07:00:00    15637
  2   335 2020-04-19 07:59:59    15637

  [[8]]
  # A tibble: 3 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 08:00:00    15637
  2   335 2020-04-19 08:39:31    15722
  3   335 2020-04-19 08:59:59    15722

  [[9]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 09:00:00    15722
  2   335 2020-04-19 09:59:59    15722

  [[10]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 10:00:00    15722
  2   335 2020-04-19 10:59:59    15722

  [[11]]
  # A tibble: 3 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 11:00:00    15722
  2   335 2020-04-19 11:27:57    32617
  3   335 2020-04-19 11:59:59    32617
Code
  foreach(it = hcg(x, "timestamp")) %do% {
    it
  }
Output
  [[1]]
  # A tibble: 3 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 01:00:00    32576
  2   335 2020-04-19 01:47:16    15722
  3   335 2020-04-19 01:59:59    15722

  [[2]]
  # A tibble: 4 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 02:00:00    15722
  2   335 2020-04-19 02:20:13    32576
  3   335 2020-04-19 02:55:41    32576
  4   335 2020-04-19 02:59:59    32576

  [[3]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 03:00:00    32576
  2   335 2020-04-19 03:59:59    32576

  [[4]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 04:00:00    32576
  2   335 2020-04-19 04:59:59    32576

  [[5]]
  # A tibble: 3 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 05:00:00    32576
  2   335 2020-04-19 05:06:50    15637
  3   335 2020-04-19 05:59:59    15637

  [[6]]
  # A tibble: 4 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 06:00:00    15637
  2   335 2020-04-19 06:04:48    15722
  3   335 2020-04-19 06:40:09    15637
  4   335 2020-04-19 06:59:59    15637

  [[7]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 07:00:00    15637
  2   335 2020-04-19 07:59:59    15637

  [[8]]
  # A tibble: 3 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 08:00:00    15637
  2   335 2020-04-19 08:39:31    15722
  3   335 2020-04-19 08:59:59    15722

  [[9]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 09:00:00    15722
  2   335 2020-04-19 09:59:59    15722

  [[10]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 10:00:00    15722
  2   335 2020-04-19 10:59:59    15722

  [[11]]
  # A tibble: 3 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 11:00:00    15722
  2   335 2020-04-19 11:27:57    32617
  3   335 2020-04-19 11:59:59    32617

  [[12]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 12:00:00    32617
  2   335 2020-04-19 12:59:59    32617

  [[13]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 13:00:00    32617
  2   335 2020-04-19 13:59:59    32617

  [[14]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 14:00:00    32617
  2   335 2020-04-19 14:59:59    32617

  [[15]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 15:00:00    32617
  2   335 2020-04-19 15:59:59    32617

  [[16]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 16:00:00    32617
  2   335 2020-04-19 16:59:59    32617

  [[17]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 17:00:00    32617
  2   335 2020-04-19 17:59:59    32617

  [[18]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 18:00:00    32617
  2   335 2020-04-19 18:59:59    32617

  [[19]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 19:00:00    32617
  2   335 2020-04-19 19:59:59    32617

  [[20]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 20:00:00    32617
  2   335 2020-04-19 20:59:59    32617

  [[21]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 21:00:00    32617
  2   335 2020-04-19 21:59:59    32617

  [[22]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 22:00:00    32617
  2   335 2020-04-19 22:59:59    32617

  [[23]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-19 23:00:00    32617
  2   335 2020-04-19 23:59:59    32617

  [[24]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 00:00:00    32617
  2   335 2020-04-20 00:59:59    32617

  [[25]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 01:00:00    32617
  2   335 2020-04-20 01:59:59    32617

  [[26]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 02:00:00    32617
  2   335 2020-04-20 02:59:59    32617

  [[27]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 03:00:00    32617
  2   335 2020-04-20 03:59:59    32617

  [[28]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 04:00:00    32617
  2   335 2020-04-20 04:59:59    32617

  [[29]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 05:00:00    32617
  2   335 2020-04-20 05:59:59    32617

  [[30]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 06:00:00    32617
  2   335 2020-04-20 06:59:59    32617

  [[31]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 07:00:00    32617
  2   335 2020-04-20 07:59:59    32617

  [[32]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 08:00:00    32617
  2   335 2020-04-20 08:59:59    32617

  [[33]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 09:00:00    32617
  2   335 2020-04-20 09:59:59    32617

  [[34]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 10:00:00    32617
  2   335 2020-04-20 10:59:59    32617

  [[35]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 11:00:00    32617
  2   335 2020-04-20 11:59:59    32617

  [[36]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 12:00:00    32617
  2   335 2020-04-20 12:59:59    32617

  [[37]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 13:00:00    32617
  2   335 2020-04-20 13:59:59    32617

  [[38]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 14:00:00    32617
  2   335 2020-04-20 14:59:59    32617

  [[39]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 15:00:00    32617
  2   335 2020-04-20 15:59:59    32617

  [[40]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 16:00:00    32617
  2   335 2020-04-20 16:59:59    32617

  [[41]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 17:00:00    32617
  2   335 2020-04-20 17:59:59    32617

  [[42]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 18:00:00    32617
  2   335 2020-04-20 18:59:59    32617

  [[43]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 19:00:00    32617
  2   335 2020-04-20 19:59:59    32617

  [[44]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 20:00:00    32617
  2   335 2020-04-20 20:59:59    32617

  [[45]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 21:00:00    32617
  2   335 2020-04-20 21:59:59    32617

  [[46]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 22:00:00    32617
  2   335 2020-04-20 22:59:59    32617

  [[47]]
  # A tibble: 2 x 3
       id timestamp           location
    <int> <dttm>                 <int>
  1   335 2020-04-20 23:00:00    32617
  2   335 2020-04-20 23:59:59    32617


kaneplusplus/checkin documentation built on Aug. 1, 2022, 1:11 p.m.