cureit: Cure Model Regression

View source: R/cureit.R

cureitR Documentation

Cure Model Regression

Description

Cure Model Regression

Usage

## S3 method for class 'formula'
cureit(
  surv_formula,
  cure_formula,
  data,
  conf.level = 0.95,
  nboot = 100,
  eps = 1e-07,
  ...
)

cureit(object, ...)

## Default S3 method:
cureit(object, ...)

Arguments

surv_formula

formula with Surv() on LHS and covariates on RHS.

cure_formula

formula with covariates for cure fraction on RHS

data

data frame

conf.level

confidence level. Default is 0.95.

nboot

number of bootstrap samples used for inference. Default number is 100.

eps

convergence criterion for the EM algorithm.

...

passed to methods

object

input object

Value

cureit object. The output includes the following:

  • surv_coefs

  • cure_coefs

  • surv_formula

  • cure_formula

  • data

  • conf.level

  • nboot

  • eps

  • surv_xlevels

  • cure_xlevels

  • tidy

  • smcure

  • surv_blueprint

  • cure_blueprint

  • blueprint

See Also

Other cureit() functions: Brier_inference_bootstrap(), broom_methods_cureit, nomogram(), predict.cureit()

Examples


cureit_obj <- cureit(surv_formula = Surv(ttdeath, death) ~ age + grade, 
cure_formula = ~ age + grade,  data = trial, nboot = 10)

# pulling survival coeffients
cureit_obj$surv_coefs

# pulling cure coefficients
cureit_obj$coefs

# `tidy` object of survival model output
cureit_obj$tidy$df_surv

# `tidy` object of cure model output
cureit_obj$tidy$df_cure

karissawhiting/cure-pipeline documentation built on Aug. 18, 2024, 1:22 a.m.