library(learnr) library(testwhat) knitr::opts_chunk$set(echo = FALSE) tutorial_options(exercise.timelimit = 60, exercise.checker=testwhat::testwhat_learnr) require(tidyverse) penguins<- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv")
penguins<- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv")
We are going to use the penguins data to produce a variety of bar plots using the base R function barplot()
.
head(penguins)
Produce a bar plot to work out which species of penguin is most common:
barplot(table(penguins$species))
ex() %>% { check_error(.) check_function(., "table") %>% check_result(.) %>% check_equal(.) check_function(., "barplot") %>% check_arg(., "height") %>% check_equal(.) }
Produce a bar plot that will compare the distribution of species within each island:
barplot(table(penguins$species, penguins$island), beside=TRUE, legend.text = TRUE)
ex() %>% { check_error(.) check_function(., "table") %>% check_result(.) %>% check_equal(.) check_function(., "barplot") %>% { check_arg(., "height") %>% check_equal(.) check_arg(., "beside", arg_not_specified_msg="It's easier to visualise what's happening if the bars are not stacked") %>% check_equal(., incorrect_msg="It's easier to visualise what's happening if the bars are not stacked") check_arg(., "legend.text", arg_not_specified_msg = "Interpretation will be easier with a legend") } }
Calculate the maximum bill length for each species of penguin and plot these on a bar plot (Tip: You may need to exclude missing values)
barplot(tapply(penguins$bill_length_mm, list(penguins$species), max, na.rm=TRUE))
ex() %>%{ check_error(.) check_function(., "tapply")%>% check_result(.) %>% check_equal(.) check_function(., "barplot") %>% check_arg(., "height") %>% check_equal(.) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.