library(learnr) library(testwhat) knitr::opts_chunk$set(echo = FALSE, message=FALSE) tutorial_options(exercise.timelimit = 60, exercise.checker=testwhat::testwhat_learnr) require(tidyverse) penguins<- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv")
penguins<- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv")
These exercises will explore the penguins data set using histograms.
head(penguins)
Produce a histogram of the bill depth.
hist(penguins$bill_depth_mm)
ex() %>% { check_error(.) check_function(., "hist") %>% check_arg(., "x") %>% check_equal(.) }
Produce a histogram of the flipper length - make the bars of the histogram blue:
hist(penguins$flipper_length_mm, col="blue")
ex() %>% { check_error(.) check_function(., "hist") %>% { check_arg(., "x") %>% check_equal(.) check_arg(., "col", arg_not_specified_msg="use the col argument to specify the bar colour") } }
The previous histogram has two "bumps" (the technical term for this is multimodal). Produce a histogram of flipper length by species:
require(plotrix)
require(plotrix) multhist(split(penguins$flipper_length_mm, penguins$species), legend.text=TRUE)
ex() %>% { check_error(.) check_function(., "multhist") %>% { check_arg(., "x") %>% check_equal(., incorrect_msg="Use split() to separate the column you wish to plot by the grouping variable") check_arg(., "legend.text", arg_not_specified_msg="Interpretation will be a lot easier with a legend") %>% check_equal(., incorrect_msg="Set legend.text=TRUE to add a legend") } } success_msg("Great Work! You can see that the second mode is gentoo penguins - it is often the case with multimodal data that the difference in modes is caused by some underlying grouping.")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.