vbicp.unb | R Documentation |
Variational Bayesian approximate mixed-effects inference on classification accuracy using the normal-binomial model
vbicp.unb(ks, ns, verbose = NULL)
ks |
Vector of successes in each population member. |
ns |
Vector of attempts in each population member. |
verbose |
Level of output verbosity. Deprecated parameter. |
The return 'effects' represent accuracies in logit space, which has infinite support. In order to obtain, e.g., a posterior-mean estimate of the population accuracy in the conventional [0..1] space, use: 'logitnmean(q$mu.mu, 1/sqrt(q$eta.mu))'
A list of posterior moments:
mu_mu: mean of the posterior population mean effect
eta_mu: precision of the posterior population mean effect
a_lamba: shape parameter of the posterior precision population effect
b_lambda: scale parameter of the posterior precision population effect
mu_rho: vector of means of the posterior subject-specific effects
eta_rho: vector of precisions of posterior subject-specific effects
Kay H. Brodersen, ETH Zurich
K.H. Brodersen, J. Daunizeau, C. Mathys, J.R. Chumbley, J.M. Buhmann, & K.E. Stephan (2013). Variational Bayesian mixed-effects inference for classification studies. NeuroImage (2013). doi:10.1016/j.neuroimage.2013.03.008. https://kaybrodersen.github.io/publications/Brodersen_2013_NeuroImage.pdf
q <- vbicp.unb(c(6, 8, 5), c(10, 10, 10))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.