readme.md

R package ‘ADtools’

Travis-CI Build
Status Coverage
status

Implements the forward-mode auto-differentiation for multivariate functions using the matrix-calculus notation from Magnus and Neudecker (1988). Two key features of the package are: (i) the package incorporates various optimisaton strategies to improve performance; this includes applying memoisation to cut down object construction time, using sparse matrix representation to save derivative calculation, and creating specialised matrix operations with Rcpp to reduce computation time; (ii) the package supports differentiating random variable with respect to their parameters, targetting MCMC (and in general simulation-based) applications.

Installation

devtools::install_github("kcf-jackson/ADtools")

Notation

Given a function f: X \mapsto Y =
f(X), where X \in R^{m \times n}, Y \in R^{h
\times
k}, the Jacobina matrix of f w.r.t. X is given by \dfrac{\partial f(X)}{\partial
X}:=\dfrac{\partial\,\text{vec}\, f(X)}{\partial\,
(\text{vec}X)^T} =
\dfrac{\partial\,\text{vec}\,Y}{\partial\,(\text{vec}X)^T}\in
R^{mn \times
hk}.

Example 1. Matrix multiplication

Function definition

Consider f(X, y) = X
y where X is a matrix, and y is a vector.

library(ADtools)
f <- function(X, y) X %*% y
X <- randn(2, 2)
y <- matrix(c(1, 1))
print(list(X = X, y = y, f = f(X, y)))
## $X
##            [,1]       [,2]
## [1,] 0.41331040  0.7085659
## [2,] 0.01066195 -1.2300747
## 
## $y
##      [,1]
## [1,]    1
## [2,]    1
## 
## $f
##           [,1]
## [1,]  1.121876
## [2,] -1.219413

Auto-differentiation

Since X has dimension (2, 2) and y has dimension (2, 1), the input space has dimension 2 \times 2 + 2 \times 1
= 6, and the output has dimension 2, i.e. f maps R^6 to R^2 and the Jacobian of f should be 2 \times 6
= 12.

# Full Jacobian matrix
f_AD <- auto_diff(f, at = list(X = X, y = y))
f_AD@dx   # returns a Jacobian matrix
##            d_X1 d_X2 d_X3 d_X4       d_y1       d_y2
## d_output_1    1    0    1    0 0.41331040  0.7085659
## d_output_2    0    1    0    1 0.01066195 -1.2300747

auto_diff also supports computing a partial Jacobian matrix. For instance, suppose we are only interested in the derivative w.r.t. y, then we can run

f_AD <- auto_diff(f, at = list(X = X, y = y), wrt = "y")
f_AD@dx   # returns a partial Jacobian matrix
##                  d_y1       d_y2
## d_output_1 0.41331040  0.7085659
## d_output_2 0.01066195 -1.2300747

Finite-differencing

It is good practice to always check the result with finite-differencing. This can be done by calling finite_diff which has the same interface as auto_diff.

f_FD <- finite_diff(f, at = list(X = X, y = y))
f_FD
##            d_X1 d_X2 d_X3 d_X4       d_y1       d_y2
## d_output_1    1    0    1    0 0.41331039  0.7085659
## d_output_2    0    1    0    1 0.01066194 -1.2300747

Example 2. Estimating a linear regression model

Simulate data from \quad y_i = X_i \beta + \epsilon_i, \quad \epsilon_i \sim N(0, 1)

set.seed(123)
n <- 1000
p <- 3
X <- randn(n, p)
beta <- randn(p, 1)
y <- X %*% beta + rnorm(n)

Inference with gradient descent

gradient_descent <- function(f, vary, fix, learning_rate = 0.01, tol = 1e-6, show = F) {
  repeat {
    df <- auto_diff(f, at = append(vary, fix), wrt = names(vary))
    if (show) print(df@x)
    delta <- learning_rate * as.numeric(df@dx)
    vary <- relist(unlist(vary) - delta, vary)
    if (max(abs(delta)) < tol) break
  }
  vary
}
lm_loss <- function(y, X, beta) sum((y - X %*% beta)^2)

# Estimate
gradient_descent(
  f = lm_loss, vary = list(beta = rnorm(p, 1)), fix = list(y = y, X = X),  learning_rate = 1e-4
) 
## $beta
## [1] -0.1417494 -0.3345771 -1.4484226
# Truth
t(beta)
##            [,1]       [,2]      [,3]
## [1,] -0.1503075 -0.3277571 -1.448165

Example 3. Sensitivity analysis of MCMC algorithms

Simulate data from \quad y_i = X_i \beta + \epsilon_i, \quad \epsilon_i \sim N(0, 1)

set.seed(123)
n <- 30  # small data
p <- 10
X <- randn(n, p)
beta <- randn(p, 1)
y <- X %*% beta + rnorm(n)

Estimating a Bayesian linear regression model

y \sim N(X\beta, \sigma^2), \quad \beta \sim N(\mathbf{b_0},
\mathbf{B_0}), \quad \sigma^2 \sim IG\left(\dfrac{\alpha_0}{2},
\dfrac{\delta_0}{2}\right)

Inference using Gibbs sampler

gibbs_gaussian <- function(X, y, b_0, B_0, alpha_0, delta_0, num_steps = 1e4) {
  # Initialisation
  init_sigma <- 1 / sqrt(rgamma0(1, alpha_0 / 2, scale = 2 / delta_0))

  n <- length(y)
  alpha_1 <- alpha_0 + n
  sigma_g <- init_sigma
  inv_B_0 <- solve(B_0)
  inv_B_0_times_b_0 <- inv_B_0 %*% b_0
  XTX <- crossprod(X)
  XTy <- crossprod(X, y)
  beta_res <- vector("list", num_steps)
  sigma_res <- vector("list", num_steps)

  pb <- txtProgressBar(1, num_steps, style = 3)
  for (i in 1:num_steps) {
    # Update beta
    B_g <- solve(sigma_g^(-2) * XTX + inv_B_0)
    b_g <- B_g %*% (sigma_g^(-2) * XTy + inv_B_0_times_b_0)
    beta_g <- t(rmvnorm0(1, b_g, B_g))

    # Update sigma
    delta_g <- delta_0 + sum((y - X %*% beta_g)^2)
    sigma_g <- 1 / sqrt(rgamma0(1, alpha_1 / 2, scale = 2 / delta_g))

    # Keep track
    beta_res[[i]] <- beta_g
    sigma_res[[i]] <- sigma_g
    setTxtProgressBar(pb, i)
  }

  list(sigma = sigma_res, beta = beta_res)
}

Auto-differentiation

gibbs_deriv <- auto_diff(
  gibbs_gaussian,
  at = list(
    b_0 = numeric(p), B_0 = diag(p), alpha_0 = 4, delta_0 = 4,
    X = X, y = y, num_steps = 5000
  ),
  wrt = c("b_0", "B_0", "alpha_0", "delta_0")
)

Computing the sensitivity of the posterior mean of b_0 w.r.t. all the prior hyperparameters

library(magrittr)
library(knitr)
library(kableExtra)

matrix_ls_to_array <- function(x) {
  structure(unlist(x), dim = c(dim(x[[1]]), length(x)), dimnames = dimnames(x[[1]]))
}

tidy_mcmc <- function(mcmc_res, var0) {
  mcmc_res[[var0]] %>% 
    purrr::map(~.x@dx) %>% 
    matrix_ls_to_array()
}

tidy_table <- function(x) {
  x %>% kable() %>% kable_styling() %>% scroll_box(width = "100%")
}
posterior_Jacobian <- apply(tidy_mcmc(gibbs_deriv, "beta"), c(1,2), mean) 
tidy_table(posterior_Jacobian)
d\_b\_01 d\_b\_02 d\_b\_03 d\_b\_04 d\_b\_05 d\_b\_06 d\_b\_07 d\_b\_08 d\_b\_09 d\_b\_010 d\_B\_01 d\_B\_02 d\_B\_03 d\_B\_04 d\_B\_05 d\_B\_06 d\_B\_07 d\_B\_08 d\_B\_09 d\_B\_010 d\_B\_011 d\_B\_012 d\_B\_013 d\_B\_014 d\_B\_015 d\_B\_016 d\_B\_017 d\_B\_018 d\_B\_019 d\_B\_020 d\_B\_021 d\_B\_022 d\_B\_023 d\_B\_024 d\_B\_025 d\_B\_026 d\_B\_027 d\_B\_028 d\_B\_029 d\_B\_030 d\_B\_031 d\_B\_032 d\_B\_033 d\_B\_034 d\_B\_035 d\_B\_036 d\_B\_037 d\_B\_038 d\_B\_039 d\_B\_040 d\_B\_041 d\_B\_042 d\_B\_043 d\_B\_044 d\_B\_045 d\_B\_046 d\_B\_047 d\_B\_048 d\_B\_049 d\_B\_050 d\_B\_051 d\_B\_052 d\_B\_053 d\_B\_054 d\_B\_055 d\_B\_056 d\_B\_057 d\_B\_058 d\_B\_059 d\_B\_060 d\_B\_061 d\_B\_062 d\_B\_063 d\_B\_064 d\_B\_065 d\_B\_066 d\_B\_067 d\_B\_068 d\_B\_069 d\_B\_070 d\_B\_071 d\_B\_072 d\_B\_073 d\_B\_074 d\_B\_075 d\_B\_076 d\_B\_077 d\_B\_078 d\_B\_079 d\_B\_080 d\_B\_081 d\_B\_082 d\_B\_083 d\_B\_084 d\_B\_085 d\_B\_086 d\_B\_087 d\_B\_088 d\_B\_089 d\_B\_090 d\_B\_091 d\_B\_092 d\_B\_093 d\_B\_094 d\_B\_095 d\_B\_096 d\_B\_097 d\_B\_098 d\_B\_099 d\_B\_0100 d\_alpha\_01 d\_delta\_01 d\_output\_1 0.0569887 0.0240169 \-0.0085018 \-0.0114905 \-0.0002056 \-0.0099043 0.0069673 \-0.0250403 \-0.0138359 0.0184303 \-0.0441342 \-0.0186824 0.0065791 0.0089195 0.0001676 0.0077123 \-0.0054299 0.0194540 0.0107661 \-0.0143304 \-0.0422326 \-0.0177185 0.0062827 0.0085277 0.0001388 0.0073738 \-0.0051957 0.0186088 0.0102891 \-0.0137093 \-0.0548737 \-0.0230575 0.0082968 0.0110663 0.0001859 0.0095235 \-0.0066902 0.0241129 0.0132928 \-0.0177620 \-0.0718000 \-0.0302760 0.0107191 0.0145789 0.0002573 0.0124716 \-0.0087673 0.0315428 0.0174258 \-0.0232140 \-0.0156627 \-0.0065633 0.0023708 0.0031359 0.0001308 0.0027179 \-0.0019058 0.0068750 0.0037912 \-0.0050542 0.0418913 0.0176076 \-0.0062615 \-0.0084694 \-0.0001351 \-0.0071959 0.0051419 \-0.0184411 \-0.0101835 0.0135673 \-0.1016804 \-0.0428326 0.0151174 0.0204964 0.0003181 0.0176513 \-0.0123461 0.0446991 0.0246896 \-0.0329021 0.0099753 0.0042146 \-0.0014552 \-0.0019818 \-0.0000670 \-0.0017475 0.0011945 \-0.0043029 \-0.0024432 0.0032439 0.0687012 0.0289268 \-0.0102440 \-0.0138316 \-0.0001937 \-0.0119421 0.0084227 \-0.0302179 \-0.0166070 0.0222462 0.1152496 0.0486374 \-0.0171780 \-0.0232862 \-0.0003697 \-0.0199968 0.0140737 \-0.0506390 \-0.0280183 0.0373722 \-0.0018965 0.0016811 d\_output\_2 0.0240377 0.0904281 0.0127987 \-0.0154678 0.0011496 \-0.0297209 0.0192483 \-0.0162636 \-0.0265724 0.0235886 \-0.0183982 \-0.0700067 \-0.0099287 0.0119620 \-0.0008713 0.0230590 \-0.0149584 0.0126714 0.0206031 \-0.0183164 \-0.0177858 \-0.0670336 \-0.0095958 0.0114911 \-0.0009177 0.0222430 \-0.0144052 0.0121760 0.0198080 \-0.0176238 \-0.0232262 \-0.0869873 \-0.0120353 0.0149244 \-0.0011250 0.0286433 \-0.0185164 0.0156581 0.0255766 \-0.0227551 \-0.0303404 \-0.1139404 \-0.0160980 0.0197683 \-0.0014266 0.0374066 \-0.0242106 0.0204458 0.0334838 \-0.0296973 \-0.0066046 \-0.0247385 \-0.0034116 0.0041890 \-0.0001068 0.0081420 \-0.0052474 0.0044657 0.0072442 \-0.0064331 0.0176188 0.0663741 0.0094205 \-0.0114027 0.0009022 \-0.0216447 0.0141864 \-0.0120085 \-0.0195519 0.0173548 \-0.0428613 \-0.1613073 \-0.0230086 0.0275584 \-0.0021971 0.0529932 \-0.0341142 0.0290588 0.0474033 \-0.0421258 0.0040008 0.0157923 0.0023707 \-0.0025788 0.0001263 \-0.0052141 0.0032759 \-0.0025446 \-0.0046489 0.0041278 0.0289120 0.1089914 0.0154794 \-0.0185779 0.0015487 \-0.0358662 0.0232800 \-0.0196546 \-0.0318409 0.0285183 0.0487821 0.1830006 0.0259046 \-0.0314158 0.0024403 \-0.0600001 0.0388629 \-0.0329070 \-0.0538610 0.0480035 \-0.0051331 0.0045483 d\_output\_3 \-0.0085091 0.0128582 0.0606947 0.0018708 0.0093748 \-0.0038372 \-0.0124373 0.0108905 \-0.0013585 0.0035816 0.0066996 \-0.0100238 \-0.0470345 \-0.0014486 \-0.0072611 0.0030017 0.0096190 \-0.0084236 0.0010817 \-0.0028071 0.0064625 \-0.0094615 \-0.0454735 \-0.0014125 \-0.0070568 0.0028694 0.0093231 \-0.0081605 0.0009901 \-0.0026940 0.0081889 \-0.0123584 \-0.0585021 \-0.0017899 \-0.0090490 0.0037064 0.0120127 \-0.0105169 0.0013044 \-0.0034779 0.0106775 \-0.0162045 \-0.0763825 \-0.0022640 \-0.0117940 0.0048318 0.0156772 \-0.0137081 0.0017181 \-0.0045021 0.0023308 \-0.0035036 \-0.0166668 \-0.0005309 \-0.0025077 0.0010566 0.0034371 \-0.0029829 0.0003518 \-0.0009703 \-0.0063362 0.0093897 0.0447738 0.0013822 0.0069415 \-0.0027284 \-0.0091884 0.0080518 \-0.0009880 0.0026380 0.0152430 \-0.0228882 \-0.1084255 \-0.0033729 \-0.0168030 0.0068048 0.0223176 \-0.0194609 0.0023904 \-0.0063921 \-0.0015991 0.0022439 0.0107478 0.0003773 0.0016300 \-0.0006714 \-0.0022394 0.0020392 \-0.0002404 0.0006235 \-0.0103342 0.0154750 0.0733211 0.0022912 0.0113836 \-0.0046196 \-0.0150125 0.0131633 \-0.0015559 0.0043453 \-0.0171223 0.0260386 0.1225932 0.0037405 0.0189755 \-0.0077206 \-0.0251427 0.0219994 \-0.0027912 0.0073362 \-0.0016336 0.0014212 d\_output\_4 \-0.0115148 \-0.0155222 0.0018741 0.0538145 \-0.0020646 0.0030748 \-0.0087192 0.0141244 0.0141004 \-0.0121362 0.0090350 0.0119581 \-0.0015009 \-0.0416657 0.0016067 \-0.0023328 0.0067214 \-0.0109202 \-0.0108953 0.0093877 0.0087038 0.0117329 \-0.0014675 \-0.0402955 0.0015294 \-0.0022764 0.0065180 \-0.0105615 \-0.0105698 0.0090910 0.0111127 0.0150710 \-0.0017092 \-0.0520296 0.0019920 \-0.0029658 0.0084436 \-0.0136627 \-0.0136540 0.0117369 0.0144505 0.0195160 \-0.0023350 \-0.0675164 0.0026036 \-0.0038820 0.0109700 \-0.0177700 \-0.0177239 0.0152723 0.0031468 0.0042670 \-0.0004861 \-0.0148352 0.0006424 \-0.0008148 0.0024087 \-0.0038815 \-0.0038776 0.0033266 \-0.0085681 \-0.0115627 0.0013937 0.0396951 \-0.0015198 0.0023721 \-0.0064352 0.0104493 0.0104159 \-0.0090011 0.0206229 0.0278116 \-0.0034118 \-0.0961119 0.0036398 \-0.0055483 0.0156814 \-0.0252497 \-0.0252152 0.0216987 \-0.0021391 \-0.0027703 0.0003903 0.0095449 \-0.0003900 0.0005380 \-0.0015780 0.0026081 0.0025117 \-0.0021678 \-0.0139711 \-0.0188096 0.0022905 0.0650464 \-0.0024392 0.0037289 \-0.0105230 0.0170629 0.0171256 \-0.0146613 \-0.0232066 \-0.0313395 0.0037780 0.1086399 \-0.0041298 0.0062744 \-0.0176437 0.0285431 0.0284539 \-0.0244253 \-0.0016562 0.0014197 d\_output\_5 \-0.0002015 0.0011602 0.0093305 \-0.0021301 0.0416820 0.0063474 \-0.0124201 \-0.0084977 0.0127248 0.0140695 0.0000392 \-0.0009037 \-0.0072236 0.0016548 \-0.0322917 \-0.0049382 0.0096484 0.0065554 \-0.0098702 \-0.0108998 0.0000799 \-0.0010397 \-0.0070015 0.0015956 \-0.0311980 \-0.0047749 0.0093385 0.0063402 \-0.0095232 \-0.0105459 0.0002337 \-0.0011615 \-0.0091311 0.0019994 \-0.0403015 \-0.0061458 0.0119972 0.0082189 \-0.0123143 \-0.0135727 0.0002891 \-0.0014201 \-0.0117045 0.0025540 \-0.0522549 \-0.0079484 0.0155687 0.0106572 \-0.0159636 \-0.0176338 0.0000658 \-0.0003473 \-0.0025924 0.0005953 \-0.0115158 \-0.0017385 0.0033803 0.0023231 \-0.0034806 \-0.0038647 \-0.0000968 0.0009752 0.0069060 \-0.0015688 0.0307289 0.0045695 \-0.0091735 \-0.0062613 0.0093726 0.0104121 0.0003115 \-0.0021644 \-0.0166177 0.0038501 \-0.0743845 \-0.0112928 0.0220746 0.0151891 \-0.0226929 \-0.0251613 0.0000843 0.0002798 0.0016057 \-0.0004489 0.0073900 0.0011070 \-0.0021410 \-0.0016478 0.0022166 0.0025215 \-0.0001848 0.0014832 0.0112817 \-0.0026156 0.0503344 0.0076649 \-0.0150416 \-0.0102730 0.0152763 0.0170167 \-0.0004861 0.0022518 0.0188271 \-0.0042536 0.0841183 0.0127844 \-0.0250641 \-0.0171571 0.0257523 0.0282801 0.0021382 \-0.0018787 d\_output\_6 \-0.0098928 \-0.0297162 \-0.0037695 0.0030480 0.0063663 0.0552486 \-0.0143575 0.0052084 0.0107802 0.0029326 0.0074214 0.0230069 0.0029022 \-0.0022937 \-0.0049406 \-0.0428277 0.0111680 \-0.0040983 \-0.0083541 \-0.0022415 0.0072248 0.0217703 0.0027583 \-0.0020931 \-0.0046577 \-0.0413635 0.0107642 \-0.0039331 \-0.0079740 \-0.0022010 0.0096220 0.0285772 0.0033567 \-0.0029425 \-0.0061197 \-0.0534077 0.0138521 \-0.0050280 \-0.0103800 \-0.0028076 0.0124796 0.0373442 0.0047290 \-0.0041209 \-0.0080016 \-0.0692467 0.0179884 \-0.0065145 \-0.0135446 \-0.0036905 0.0027195 0.0080265 0.0009267 \-0.0007802 \-0.0019473 \-0.0150756 0.0038894 \-0.0014342 \-0.0029022 \-0.0008212 \-0.0071938 \-0.0216834 \-0.0027394 0.0022030 0.0046396 0.0405590 \-0.0106023 0.0038578 0.0079088 0.0022191 0.0175856 0.0529079 0.0068558 \-0.0053461 \-0.0112332 \-0.0985946 0.0253945 \-0.0093039 \-0.0191869 \-0.0052745 \-0.0015026 \-0.0050982 \-0.0007503 0.0003666 0.0011963 0.0097106 \-0.0024161 0.0006043 0.0018568 0.0005551 \-0.0118376 \-0.0357508 \-0.0045558 0.0035470 0.0075299 0.0667830 \-0.0173927 0.0063052 0.0127777 0.0035293 \-0.0201816 \-0.0602960 \-0.0076860 0.0063388 0.0127583 0.1115422 \-0.0289714 0.0105507 0.0219431 0.0056070 0.0048153 \-0.0042268 d\_output\_7 0.0069446 0.0192320 \-0.0124953 \-0.0086532 \-0.0124090 \-0.0143473 0.0558417 \-0.0146184 \-0.0051602 \-0.0035448 \-0.0051272 \-0.0148759 0.0097013 0.0066371 0.0096298 0.0111660 \-0.0432957 0.0113787 0.0040087 0.0027347 \-0.0050374 \-0.0139463 0.0094648 0.0063540 0.0092342 0.0107642 \-0.0418240 0.0109867 0.0038158 0.0026658 \-0.0067943 \-0.0184984 0.0123624 0.0084440 0.0120081 0.0139189 \-0.0540180 0.0141399 0.0049925 0.0034015 \-0.0087916 \-0.0242142 0.0156719 0.0111644 0.0156054 0.0179926 \-0.0700294 0.0183071 0.0065053 0.0044500 \-0.0019214 \-0.0051924 0.0035041 0.0023222 0.0036054 0.0039501 \-0.0152366 0.0040064 0.0013745 0.0009905 0.0050195 0.0139367 \-0.0093230 \-0.0063717 \-0.0091359 \-0.0103301 0.0413188 \-0.0108259 \-0.0037585 \-0.0026864 \-0.0123397 \-0.0342099 0.0222600 0.0153796 0.0220557 0.0255470 \-0.0996328 0.0261613 0.0091591 0.0063636 0.0009729 0.0032416 \-0.0021301 \-0.0013462 \-0.0022680 \-0.0025112 0.0097469 \-0.0022555 \-0.0008595 \-0.0006834 0.0082659 0.0230507 \-0.0151265 \-0.0103304 \-0.0148400 \-0.0173030 0.0675348 \-0.0176816 \-0.0059760 \-0.0042830 0.0142285 0.0391065 \-0.0251826 \-0.0176514 \-0.0249597 \-0.0289096 0.1127846 \-0.0295681 \-0.0105792 \-0.0068367 \-0.0050240 0.0044264 d\_output\_8 \-0.0250804 \-0.0161938 0.0109440 0.0141087 \-0.0084907 0.0051460 \-0.0146053 0.0673064 0.0047617 \-0.0103918 0.0193901 0.0123672 \-0.0085698 \-0.0107848 0.0066224 \-0.0038823 0.0111201 \-0.0522336 \-0.0036282 0.0080575 0.0187944 0.0119589 \-0.0082823 \-0.0105283 0.0064342 \-0.0038049 0.0108549 \-0.0505127 \-0.0035369 0.0078282 0.0242659 0.0156709 \-0.0106651 \-0.0137003 0.0081853 \-0.0050257 0.0142004 \-0.0650318 \-0.0046159 0.0100563 0.0314683 0.0204053 \-0.0137138 \-0.0178233 0.0105922 \-0.0065138 0.0184283 \-0.0843316 \-0.0060171 0.0130294 0.0068385 0.0043584 \-0.0030011 \-0.0038238 0.0022621 \-0.0013739 0.0038935 \-0.0183673 \-0.0012828 0.0028227 \-0.0185725 \-0.0119098 0.0081547 0.0104460 \-0.0063207 0.0037169 \-0.0108092 0.0498851 0.0035081 \-0.0076994 0.0449804 0.0289774 \-0.0196031 \-0.0252719 0.0153021 \-0.0091713 0.0260506 \-0.1207382 \-0.0085237 0.0186647 \-0.0042959 \-0.0026810 0.0019020 0.0023368 \-0.0014871 0.0008146 \-0.0023603 0.0116123 0.0007876 \-0.0018047 \-0.0303050 \-0.0194974 0.0132639 0.0170032 \-0.0103353 0.0061868 \-0.0176369 0.0814000 0.0056628 \-0.0125827 \-0.0507465 \-0.0328884 0.0220748 0.0286126 \-0.0171680 0.0104383 \-0.0296133 0.1359903 0.0097023 \-0.0211098 0.0015298 \-0.0013439 d\_output\_9 \-0.0138377 \-0.0266094 \-0.0013464 0.0141003 0.0127371 0.0108331 \-0.0052421 0.0048221 0.0530128 \-0.0142592 0.0106016 0.0204647 0.0009927 \-0.0108144 \-0.0098145 \-0.0083304 0.0039921 \-0.0038836 \-0.0410147 0.0110594 0.0103596 0.0196407 0.0009328 \-0.0104557 \-0.0094673 \-0.0080459 0.0037988 \-0.0038664 \-0.0396832 0.0107345 0.0134222 0.0256635 0.0011410 \-0.0136421 \-0.0123035 \-0.0104722 0.0050322 \-0.0046676 \-0.0512514 0.0138072 0.0173695 0.0334742 0.0017008 \-0.0178857 \-0.0160227 \-0.0136459 0.0066662 \-0.0059179 \-0.0664936 0.0178668 0.0037365 0.0072135 0.0003140 \-0.0037982 \-0.0036054 \-0.0029823 0.0015032 \-0.0012083 \-0.0144189 0.0038367 \-0.0102321 \-0.0195538 \-0.0009581 0.0104256 0.0093853 0.0078496 \-0.0038132 0.0036739 0.0392466 \-0.0105759 0.0247708 0.0475729 0.0024715 \-0.0252144 \-0.0227486 \-0.0193319 0.0092072 \-0.0086815 \-0.0949740 0.0255564 \-0.0021981 \-0.0043490 \-0.0002609 0.0022409 0.0021664 0.0017800 \-0.0007949 0.0006660 0.0088741 \-0.0023693 \-0.0167036 \-0.0320287 \-0.0016078 0.0169591 0.0152770 0.0130280 \-0.0062642 0.0059658 0.0639315 \-0.0172731 \-0.0280732 \-0.0539748 \-0.0027756 0.0286292 0.0256939 0.0218936 \-0.0106074 0.0097172 0.1072256 \-0.0290052 0.0027076 \-0.0023674 d\_output\_10 0.0183998 0.0235696 0.0035820 \-0.0121090 0.0140323 0.0028750 \-0.0034804 \-0.0103564 \-0.0142733 0.0604927 \-0.0145180 \-0.0181169 \-0.0026837 0.0092915 \-0.0108873 \-0.0023307 0.0028632 0.0081400 0.0110213 \-0.0467783 \-0.0140121 \-0.0179260 \-0.0025975 0.0089999 \-0.0105325 \-0.0022815 0.0028046 0.0079632 0.0107114 \-0.0453199 \-0.0177544 \-0.0229244 \-0.0036911 0.0116933 \-0.0135718 \-0.0027779 0.0033604 0.0100647 0.0138165 \-0.0584723 \-0.0229918 \-0.0295581 \-0.0045324 0.0150177 \-0.0176017 \-0.0035554 0.0042804 0.0129093 0.0178981 \-0.0758737 \-0.0050233 \-0.0064541 \-0.0010407 0.0033427 \-0.0040061 \-0.0008135 0.0009901 0.0029355 0.0039354 \-0.0164856 0.0137477 0.0177026 0.0026546 \-0.0089431 0.0103514 0.0019110 \-0.0025516 \-0.0076565 \-0.0106108 0.0448584 \-0.0330814 \-0.0424295 \-0.0063049 0.0217503 \-0.0250430 \-0.0050663 0.0060199 0.0185659 0.0256592 \-0.1084753 0.0033399 0.0040222 0.0004825 \-0.0021145 0.0024388 0.0005097 \-0.0005756 \-0.0020969 \-0.0024352 0.0102202 0.0223668 0.0286054 0.0042865 \-0.0146718 0.0168359 0.0034689 \-0.0042721 \-0.0125683 \-0.0174525 0.0730667 0.0369782 0.0475096 0.0072398 \-0.0244064 0.0282180 0.0056742 \-0.0068803 \-0.0207674 \-0.0287255 0.1219028 0.0038724 \-0.0033642


kcf-jackson/ADtools documentation built on Nov. 16, 2020, 7:12 p.m.