Hessian_LLE: Hessian Local Linear Embedding

Description Usage Arguments Details Value References Examples

View source: R/Hessian_LLE.R

Description

Hessian Local Linear Embedding

Usage

1
Hessian_LLE(X, k, d)

Arguments

X

N x D matrix (N samples, D features).

k

integer; Number of nearest neighbor.

d

integer; The target dimension.

Details

Matlab codes were written by David Donoho & Carrie Grimes (2003) and extracted from Todd Wittman's MANI: Manifold Learning Toolkit.

Value

A list of two objects. The first is the projected data, the second is the mse.

References

Donoho, D. L., & Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences, 100(10), 5591-5596.

MANI: Manifold Learning Toolkit - http://macs.citadel.edu/wittman/research.html

Examples

1
2
3
4
5
6
#Simulate data
sim_data <- swiss_roll(N = 600)
library(plotly)
p1 <- plotly_3D(sim_data); p1
HLLE_data <- Hessian_LLE(sim_data$data, k = 8, d = 2)
p2 <- plotly_2D(HLLE_data$projection, color = sim_data$colors); p2

kcf-jackson/maniTools documentation built on April 20, 2020, 8:29 a.m.