probtranskde: Get KDE using Geenens et. al 2014 and 2018's methods: 1)...

Description Usage Arguments Value

View source: R/marginal_methods.R

Description

Get KDE using Geenens et. al 2014 and 2018's methods: 1) transformation with probit or log function, 2) local likelihood estimation 3) nearest-neighbor bandwdith selection

Usage

1
2
probtranskde(x, xmax, scale = 0.9999, zero_offset = 1e-04,
  max_scaler = 2, weight = "WLSCV2", n.res = 500)

Arguments

x

A vector of samples

xmax

Maximum allowable x value for probit transformation, or NaN for log transformation (non-negative)

scale

Scaling factor (0,1] to move maximum values off boundary at 1

zero_offset

Amount to shift minimum values off the boundary at 0 in the (0,1) domain

max_scaler

For log transforms, estimation is made over the range max(x)*max_scaler

weight

One of 'LSCV', 'WLSCV1', 'WLSCV2'

n.res

length of resulting estimation vector

Value

A list of the estimate evaluation points, density, and cumulative distribution


kdayday/forecasting documentation built on Oct. 7, 2020, 7:16 p.m.