| remove_signs_redundant | R Documentation |
This function removes redundant signs using semantic similarity matrices.
remove_signs_redundant( sce = NULL, similarity_matrix = NULL, threshold = NULL, keep_rareID = NULL )
sce |
A SingleCellExperiment object. |
similarity_matrix |
A semantic similarity matrix. |
threshold |
A threshold value of semantic similarity, used for regarding biological terms as similar ones |
keep_rareID |
If TRUE, biological terms with the larger ICs are kept. |
A SingleCellExperiment object.
data(pbmc_eg)
data(human_GO_eg)
mat <- t(as.matrix(SummarizedExperiment::assay(pbmc_eg, "centered")))
pbmc_cormat <- cor(mat, method = "spearman")
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human_GO_eg[["BP"]])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = pbmc_cormat,
th_posi = 0.24, th_nega = -0.20)
pbmcs$GO <- create_signs(sce = pbmcs$GO, min_cnt_strg = 2, min_cnt_vari = 2)
pbmcs$GO <- remove_signs_redundant(
sce = pbmcs$GO, similarity_matrix = human_GO_eg$similarity_matrix$BP,
threshold = 0.80, keep_rareID = TRUE)
# The results are stored in `metadata(pbmcs$GO)$sign_SCG`,
# `metadata(pbmcs$GO)$sign_VCG`, `metadata(pbmcs$GO)$sign_all`,
# and if there exist, `metadata(pbmcs$GO)$sign_SCG_redundant` and
# `metadata(pbmcs$GO)$sign_VCG_redundant`.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.