Description Usage Arguments Value Examples
This function performs iterative conditional modes to obtain maximum a posteriori estimates for β (covariate coefficients), w (latent abundances), and P (the precision matrix).
1 | estimate(mfit)
|
mfit |
- a MInt model object. |
A MInt model object with the following attributes:
optim |
List containing optimization details |
optim$lambda |
Value of the L1 penalty used during optimization |
data |
List containing the raw data |
data$design |
File path of the design matrix |
data$response |
File path of the response matrix |
data$fmla |
Formula used to model each response in terms of the design variables |
data$y |
Raw numerical data for the response matrix |
data$xd |
Design matrix in categorical form |
data$x |
Design matrix in numerical form |
param |
List containing parameter estimates |
param$beta |
p-covariates x o-responses matrix of regression coefficients |
param$w |
n-samples x o-responses matrix of latent abundances |
param$P |
o-responses x o-responses precision matrix |
1 2 3 4 | x <- system.file("extdata", "x.txt", package="MInt");
y <- system.file("extdata", "y.txt", package="MInt");
m <- mint(y,x,fmla = ~feature1 + feature2)
m <- estimate(m)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.