Description Usage Arguments Value Author(s) Examples
This function is implemented to perform individual DE analysis methods. The current implementation of
scDEA integrates tweleve state-of-the-art methods: Beta-poisson mixture model (BPSC),
DEsingle, DESeq2, edgeR, Model-based analysis of single-cell transcriptomics (MAST), monocle, scDD,
T-test, Wilcoxon rank sum test (Wilcoxon test), limma, Seurat and zingeR.edgeR.
This function depends on the follwing R package: BPSC, DEsingle, DESeq2, edgeR, MAST, monocle, scDD,
limma, Seurat, zingeR, SingleCellExperiment, dplyr.
These packages will be automatically installed along
with scDEA.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | scDEA_individual_methods(
raw.count,
cell.label,
is.normalized = FALSE,
verbose = TRUE,
BPSC = TRUE,
DEsingle = TRUE,
DESeq2 = TRUE,
edgeR = TRUE,
MAST = TRUE,
monocle = TRUE,
scDD = TRUE,
Ttest = TRUE,
Wilcoxon = TRUE,
limma = TRUE,
Seurat = TRUE,
zingeR.edgeR = TRUE,
BPSC.coef = 2,
BPSC.normalize = "CPM",
BPSC.parallel = TRUE,
DEsingle.parallel = TRUE,
DEsingle.normalize = "CPM",
DESeq2.test = "LRT",
DESeq2.parallel = TRUE,
DESeq2.beta.prior = TRUE,
DESeq2.fitType = "parametric",
DESeq2.normalize = "CPM",
edgeR.Test = "QLFT",
edgeR.normalize = "TMM",
limma.method.fit = "ls",
limma.trend = TRUE,
limma.robust = TRUE,
limma.normalize = "CPM",
Seurat.normalize = "CPM",
Seurat.method = "bimod",
MAST.method = "bayesglm",
MAST.normalize = "CPM",
MAST.parallel = TRUE,
monocle.cores = 1,
monocle.normalize = "CPM",
scDD.alpha1 = 0.01,
scDD.mu0 = 0,
scDD.s0 = 0.01,
scDD.a0 = 0.01,
scDD.b0 = 0.01,
scDD.normalize = "CPM",
scDD.permutation = 0,
Ttest.normalize = "CPM",
Wilcoxon.normalize = "CPM",
zingeR.edgeR.normalize = "CPM",
zingeR.edgeR.maxit.EM = 100
)
|
raw.count |
single-cell RNA-seq matrix. The format could be raw read count or normalized matrix. The rows correspond to genes and the columns. |
cell.label |
cell labels information. The cells need be divided into two categories. |
is.normalized |
a boolean variable that defines whether the input raw.count has been normalized? Default is FALSE. |
verbose |
a boolean variable that defines whether to save the DE analysis results and name "Results_DE_individual.RData" in the current working directory. |
BPSC |
a boolean variable that defines whether to perform DE analysis using the BPSC method. Default is TRUE. |
DEsingle |
a boolean variable that defines whether to perform DE analysis using the DEsingle method. Default is TRUE. |
DESeq2 |
a boolean variable that defines whether to perform DE analysis using the DESeq2 method. Default is TRUE. |
edgeR |
a boolean variable that defines whether to perform DE analysis using the edgeR method. Default is TRUE. |
MAST |
a boolean variable that defines whether to perform DE analysis using the MAST method. Default is TRUE. |
monocle |
a boolean variable that defines whether to perform DE analysis using the MONOCLE method. Default is TRUE. |
scDD |
a boolean variable that defines whether to perform DE analysis using the scDD method. Default is TRUE. |
Ttest |
a boolean variable that defines whether to perform DE analysis using the T-test method. Default is TRUE. |
Wilcoxon |
a boolean variable that defines whether to perform DE analysis using the Wilcoxon method. Default is TRUE. |
limma |
a boolean variable that defines whether to perform DE analysis using the limma method. Default is TRUE. |
Seurat |
a boolean variable that defines whether to perform DE analysis using the Seurat method. Default is TRUE. |
zingeR.edgeR |
a boolean variable that defines whether to perform DE analysis using the zingeR.edgeR method. Default is TRUE. |
BPSC.coef |
an integer to point out the column index corresponding to the coefficient for the generalized linear mode (GLM) testing in BPSC. Default value is 2. |
BPSC.normalize |
a string variable specifying the type of size factor estimation in BPSC method. Possible values: "TMM", "RLE", "CPM". Default is "CPM". |
BPSC.parallel |
a boolean variable that defines whether to execute parallel computing for BPSC method. Default is TRUE. |
DEsingle.parallel |
a boolean variable that defines whether to execute parallel computing for DEsingle method. Default is TRUE. |
DEsingle.normalize |
a string variable specifying the type of size factor estimation in DEsingle method. Possible values: "TMM", "RLE", "CPM". Default is "CPM". |
DESeq2.test |
a string variable specifying the type of test the difference in deviance between a full and reduced model formula in DESeq2 method. Possible values: "Wald" or "LRT". The values represent Wald tests or likelihood ratio test. Default is "Wald". |
DESeq2.parallel |
a boolean variable that defines whether to execute parallel computing for DESeq2 method. Default is TRUE. The parallel computing may fail on Windows system. Default is TRUE. |
DESeq2.beta.prior |
a boolean variable that defines whether or not to put a zero-mean normal prior on the non-intercept coefficient in DESeq2 method. Default is TRUE. |
DESeq2.fitType |
a string variable specifying the type of fitting of dispersions to the mean intensity in DESeq2 method. Possible values: "parametric", "local", "mean". Default is "parametric". |
DESeq2.normalize |
a string variable specifying the type of size factor estimation in DESeq2 method. Possible values: "TMM", "RLE", "CPM". Default is "CPM". |
edgeR.Test |
a string variable specifying the type of fitting distribution to count data for each gene. Possible values: "LRT", "QLFT". The values represent negative binomial generalized log-linear model and quasi-likelihood negative binomial generalized log-linear model. Default is "QLFT". |
edgeR.normalize |
a string variable specifying the type of size factor estimation in edgeR method. Possible values: "TMM", "RLE", "CPM". Default is "CPM". |
limma.method.fit |
a string variable specifying the type of fitting method in limma method. Possible values: "ls", "robust". The values represent least squares and robust regression. Default is "ls". |
limma.trend |
a boolean variable that defines whether or not to allow an intensity-trend for the prior variance in limma method. Default is TRUE. |
limma.robust |
a boolean variable that defines whether or not to estimate defined prior information and variance prior against outlier sample variances in limma method. Default is TRUE. |
limma.normalize |
a string variable specifying the type of size factor estimation in limma method. Possible values: "TMM", "RLE", "CPM". Default is "CPM". |
Seurat.normalize |
a string variable specifying the type of size factor estimation in Seurat method. Possible values: "TMM", "RLE", "CPM". Default is "CPM". |
Seurat.method |
a string variable specifying the type of test method in Seurat method. Possible values: "LR", "bimod", "roc". The values represent likelihood-ratio test, negative binomial generalized linear model, ROC analysis. Default is "bimod". |
MAST.method |
a string variable specifying the type of test method in MAST method. Possible values: "glm", "glmer", "bayesglm". Default is "bayesglm". |
MAST.normalize |
a string variable specifying the type of size factor estimation in Seurat method. Possible values: "TMM", "RLE", "CPM". Default is "CPM". |
MAST.parallel |
a boolean variable that defines whether to execute parallel computing for MAST method. Default is TRUE. |
monocle.cores |
the number of cores to be used while testing each gene for differential expression.. Default is 1. |
monocle.normalize |
a string variable specifying the type of size factor estimation in monocle method. Possible values: "TMM", "RLE", "CPM". Default is "CPM". |
scDD.alpha1 |
prior parameter value to be used to model each gene as a mixture of DP normals in scDD method. Default is 0.01. |
scDD.mu0 |
prior parameter values to be used to model each gene as a mixture of DP normals in scDD method. Default is 0. |
scDD.s0 |
prior parameter values to be used to model each gene as a mixture of DP normals in scDD method. Default is 0.01. |
scDD.a0 |
prior parameter values to be used to model each gene as a mixture of DP normals in scDD method. Default is 0.01. |
scDD.b0 |
prior parameter values to be used to model each gene as a mixture of DP normals in scDD method. Default is 0.01. |
scDD.normalize |
a string variable specifying the type of size factor estimation in scDD method. Possible values: "TMM", "RLE", "CPM". Default is "CPM". |
scDD.permutation |
the number of permutations to be used in calculating empirical p-values in scDD method. If the parameter value is set to 0, the full Bayes Factor will not be performed. Else, scDD method takes the nonparametric Kolmogorove-Smirnov test to identify DGEs. Default is 0. |
Ttest.normalize |
a string variable specifying the type of size factor estimation in t-test method. Possible values: "TMM", "RLE", "CPM". Default is "CPM". |
Wilcoxon.normalize |
a string variable specifying the type of size factor estimation in Wilcoxon method. Possible values: "TMM", "RLE", "CPM". Default is "CPM". |
zingeR.edgeR.normalize |
a string variable specifying the type of size factor estimation in zingeR.edgeR method. Possible values: "TMM", "RLE", "CPM". Default is "CPM". |
zingeR.edgeR.maxit.EM |
The number of iterations for EM-algorithm in zingeR.edgeR method. If the EM-algorithm does not stop automatically, then, the algorithm may not be convergence. The user need set a larger value. Default is 100. |
a p-values matrix contains the p-values of each differential expression anlysis methods.
Huisheng, Li, <lihs@mails.ccnu.edu.cn>
1 2 3 4 5 6 7 | data("Grun.counts.hvg")
data("Grun.group.information")
# scDD is very slow
Pvals <- scDEA_individual_methods(raw.count = Grun.counts.hvg,
cell.label = Grun.group.information, verbose = FALSE)
combination.Pvals <- lancaster.combination(Pvals, weight = TRUE, trimmed = 0.2)
adjusted.Pvals <- scDEA.p.adjust(combination.Pvals, adjusted.method = "bonferroni")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.