classifyProfile.svm: Expression profile classification

Description Usage Arguments Details Value Author(s) See Also Examples

Description

Function to classify microarray gene expression profiles using support vector machines (SVM)

Usage

1
classifyProfile.svm(ref_matrix, query_mat, chip1 = "hgu133plus2", chip2 = "hgu133a", fun1 = median, fun2 = mean)

Arguments

ref_matrix

Normalized microarray data matrix to be used as reference, with probe sets corresponding to rows and samples corresponding to columns.

query_mat

Normalized microarray query matrix to be classified, with probe sets corresponding to rows and samples corresponding to columns.

chip1

Chip name of the reference matrix.

chip2

Chip name of the query matrix. This parameter can be ignored if the reference and query matrix are from the same chip.

fun1

mean or median. This will specify the number of marker genes that will be used for classification. Default is median.

fun2

mean or median. This will be used to summarize the expression values of probe sets that belong to the same gene. This parameter can be ignored if the reference and query matrix are from the same chip. Default is mean.

Details

This function is based on the function svm from the R-package 'e1071'.

Value

A data frame with the predicted classes for each query profile.

Author(s)

Khadija El Amrani <khadija.el-amrani@charite.de>

See Also

see also getMarkerGenes.

Examples

1
2
3
4
5
6
7
8
library(sampleClassifierData)
data("se_micro_refmat")
micro_refmat <- assay(se_micro_refmat)
data("se_micro_testmat")
micro_testmat <- assay(se_micro_testmat)
res1.svm.df <- classifyProfile.svm(ref_matrix=micro_refmat, query_mat=micro_testmat,
chip1="hgu133plus2",chip2="hgu133a")
res1.svm.df

khadija-a/sampleClassifier documentation built on May 20, 2019, 9:22 a.m.