| logL.joint.multi.OUOU.user | R Documentation | 
Returns log-likelihood for a multivariate Ornstein-Uhlenbeck model with used defined A and R matrices..
logL.joint.multi.OUOU.user(
  init.par,
  yy,
  A.user,
  R.user,
  locations.A,
  location.diag.A,
  location.upper.tri.A,
  location.lower.tri.A,
  locations.R,
  location.diag.R,
  location.upper.tri.R
)
| init.par | initial (starting) parameters values | 
| yy | a multivariate evoTS object | 
| A.user | the pull matrix. | 
| R.user | the drift matrix. | 
| locations.A | location (row and column) of parameters (elements) in the A matrix that is estimated | 
| location.diag.A | location (row and column) of parameters (elements) in the diagonal of the A matrix that is estimated | 
| location.upper.tri.A | location (row and column) of parameters (elements) in the upper triangle of the A matrix that is estimated | 
| location.lower.tri.A | location (row and column) of parameters (elements) in the lower triangle of the A matrix that is estimated | 
| locations.R | location (row and column) of parameters (elements) in the R matrix that is estimated | 
| location.diag.R | location (row and column) of parameters (elements) in the diagonal of the R matrix that is estimated | 
| location.upper.tri.R | location (row and column) of parameters (elements) in the upper triangle of the R matrix that is estimated | 
In general, users will not be access these functions directly, but instead use the optimization functions, which use these functions to find the best-supported parameter values.
The log-likelihood of the parameter estimates, given the data.
Kjetil Lysne Voje
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.