| apply.factor.grouping | Apply groupings to new data |
| classify.columns | Get variables class information |
| compute.woe | Create cross-tabulation between factor and binary target |
| convert.columns | Convert columns |
| create.woe | Create WOE mapping |
| cv.glm | Compute average AUC with cross-validation |
| find.optimal.subset | Beta |
| generate.date.features | Generate date features |
| get.auc.importance | Calculate AUC importance of each attribute |
| get.chisq.importance | Calculate Chi-squared importance of each attribute |
| get.date.columns | Get names of all date columns |
| get.date.format | Deduct date format |
| get.factor.columns | Get names of all factor columns |
| get.numeric.columns | Get names of all numeric columns |
| get.proposed.conversions | Get proposed type conversions |
| get.rf.importance | Calculate RandomForest importance of each attribute |
| get.rf.subset.quality | Beta |
| get.var.importance | Calculate combined importance measure of each attribute |
| group.factor | Put rare factor values into separate group |
| optimal.factor.grouping | Optimal factor cutoff (Beta) |
| set.missing.factors.to.NA | Replace empty factor values with "NA" |
| set.missing.to.mean | Replace numeric missing values with mean |
| set.missing.to.prediction | Predict missing numeric values (beta) |
| set.missing.to.random | Set missing to random |
| set.missing.to.zero | Replace numeric missing values with zero |
| standardize.columns | Standardize columns |
| woe.apply | Apply WOE mapping to new data |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.