The goal of HTEBand is to construct uniform confidence bands for conditional expectation functions and conditional average treatment effect functions.
You can install the development version from GitHub with:
install.packages("remotes") # if not installed
remotes::install_github("koohyun-kwon/HTEBand")
For a conditional expectation function, use NpregBand
command. For a
conditional average treatment effect function, use CATEBand
command.
See help page of each function for details:
?HTEBand::NpregBand
?HTEBand::CATEBand
Nonparametric regression via NpregBand
:
library(HTEBand)
library(tidyverse)
#> ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
#> ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
#> ✓ tibble 3.1.5 ✓ dplyr 1.0.7
#> ✓ tidyr 1.1.4 ✓ stringr 1.4.0
#> ✓ readr 2.0.2 ✓ forcats 0.5.1
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
x <- seq(-1, 1, length.out = 500)
y <- x^2 + rnorm(500, 0, 1/4)
cb.res <- NpregBand(y, x, 2, 0.95, "L", n.eval = 25, print.t = FALSE)
#> Residual calculation... Done
#> Optimal bandwidth calculation... Done
#> CB construction...
#> Done
cb.res$fx <- (cb.res$eval)^2
ggplot(data = cb.res) + geom_line(aes(x = eval, y = cb.lower)) +
geom_line(aes(x = eval, y = cb.upper)) + geom_line(aes(x = eval, y = fx), color = "red") +
theme_bw() + xlab("x") + ylab("f(x)")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.