knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" ) options(tibble.print_min = 5, tibble.print_max = 5)
REFLECT (REcurrent Features LEveraged for Combination Therapy) is to accelerate discovery of combination therapies tailored to multi-omic profiles of cancer patient cohorts with matching oncogenic features.
REFLECT identifies co-actionable, co-occurring oncogenic alterations that are recurrent within patient cohorts using genomic, transcriptomic and phosphoproteomic data.
The REFLECT website (https://bioinformatics.mdanderson.org/reflect/) provides co-occurrence analyses of ~200 patient cohorts each identified by a potentially actionable aberration.
The reflect package provides a set of functions that runs the reflect pipeline:
get_best_wbound()
gets the optimal tunning parameter that maximizes gap statistic.sparse_hclust()
performs a sparse hierarchical clustering.get_recur_pval()
gets recurrence p values based on clustered matrix.get_recur_actionable_features()
gets recurrent and actionable features.get_coaltered_targets()
gets combination targets based on stratification biomarker and REFLECT-selected features.reflect_pipeline()
runs an end-to-end REFLECT pipeline.reflect_pipeline2()
runs a REFLECT pipeline given a precomputed tunning parameter.The reflect package also provides a set of functions that plots the results:
plot_bar_tumortypes()
plots a bar chart of tumor type distribution.plot_bar_tumortypes_stack_tcga_ccl()
plots a stacked bar chart of tumor types for TCGA and cell line samples.plot_gapstat()
plots a gap statistic profile.plot_bar_weights()
plots a bar chart of feature weights.plot_heatmap()
plot a heatmap with covariate bars of feature weights and sample types.You can learn more about them in vignette("reflect")
.
To use the latest development version, you can install reflect from GitHub:
# install.packages("devtools") devtools::install_github("korkutlab/reflect")
library(reflect) # selecting optimal tunning parameter # this is computationally costly and may take take a long time # gapstat_bestwbound <- get_best_wbound(egfr_data$mat_value) # wbound <- gapstat_bestwbound$best_wbound # run a REFLECT pipeline given a precomputed tunning parameter wbound <- 2.0 res <- reflect_pipeline2(wbound, egfr_data$mat_value, egfr_data$df_sample, egfr_data$df_feature)
Li X., et al. (2020) Precision combination therapies from recurrent oncogenic co-alterations. doi: https://doi.org/10.1101/2020.06.03.132514
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.