View source: R/test_kimura_par.R
test_kimura_par | R Documentation |
This function is a generalisation of the test_kimura function from the lbozhilova/kimura package. It corresponds to a Monte Carlo Kolmogorov-Smirnov test to detect genetic drift by examining deviation from a Kimura distribution.
test_kimura_par(h, p, b, num_MC = 1000, round = FALSE)
h |
A vector containig heteroplasmy measurements. Every observation should be in |
p |
The p parameter of the Kimura distribution. Should be in |
b |
The b parameter of of the Kimura distribution. Should be in |
num_MC |
number of Monte Carlo runs |
round |
a logical argument. True if heteroplasmy fractions are rounded to two significant digits. Be cautious as rounding can impact the calculated p-values. Default value is FALSE |
object of class htest
data_ex=rnorm(n,0.5,0.1)
fit = estimate_parameters_ml(data_ex)
p=fit[1]
b=fit[2]
test_kimura_par(data_ex,p,b)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.