dimarEvaluatePerformance: dimarEvaluatePerformance

View source: R/dimarEvaluatePerformance.R

dimarEvaluatePerformanceR Documentation

dimarEvaluatePerformance

Description

Evaluates performance of imputation algorithms.

Usage

dimarEvaluatePerformance(
  Imputations,
  ref,
  sim,
  rankby = "RMSE",
  RMSEttest = TRUE,
  group = "cluster"
)

Arguments

Imputations

Imputed data set(s)

ref

Reference data

sim

Simulated patterns of MVs

rankby

Performance measure which should serve as rank criterion

RMSEttest

flag if RMSE of ttest should be calculated

group

indices for ttest

Value

Data frame containing the following performance measures for each imputation method: Deviation, RMSE, RSR, p-Value_F-test, Accuracy, PCC, and in case of RMSEttest=TRUE the RMSE t-test result

Examples

mtx <- matrix(rnorm(1000),nrow=100)
mtx[sample(c(1:1000),100)] <- NA
coef <- dimarLearnPattern(mtx)
ref <- dimarConstructReferenceData(mtx)
sim <- dimarAssignPattern(ref, coef, mtx)
Imputations <- dimarDoImputations(sim, c('impSeqRob', 'ppca', 'imputePCA'))
Performance <- dimarEvaluatePerformance(Imputations, ref, sim)

kreutz-lab/DIMAR documentation built on Aug. 19, 2024, 11:07 a.m.