Description Usage Arguments Value Examples
View source: R/top.discriminator.R
Detects top discriminators that contribute to group separation based on the fixation index (Fst).
1 2 3 4 5 6 7 8 9 10 11 12  | 
cluster.obj | 
 The object which is returned from   | 
group1 | 
 To specify the first group number to be compared. (also see
  | 
group2 | 
 To specify the second group number to be compared. (also see
  | 
bim.file | 
 Option: In case that SNP information is not provided to
  | 
use.node.number | 
 To specify whether a group number or a node number is be used. If TRUE, a node nubmer is used instead. Default = FALSE.  | 
num.top | 
 A number of top Fst SNPs to be returned. This parameter is
used when   | 
percentile | 
 A percentile for top Fst SNPs to be returned. This
parameter is used when   | 
use.percentile | 
 A logical value to indicate whether   | 
use.path | 
 A logical value to indicate whether   | 
result.path | 
 A path to an result directory of ipcaps. This parameter is
used when   | 
The returned value is a data.frame of SNP information sorting by Fst in descending order, which contains 7 columns, chr, SNP, centimorgans, position, allele1, allele2, and Fst. The column 1-6 are SNP information from the bim file. The column Fst contains estimated Fst between group1 and group2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95  | # Importantly, bed file, bim file, and fam file are required
# Use the example files embedded in the package
BED.file <- system.file("extdata",
                        "ipcaps_example.bed",
                        package = "IPCAPS.BIOC")
LABEL.file <- system.file("extdata",
                          "ipcaps_example_individuals.txt.gz",
                          package = "IPCAPS.BIOC")
my.cluster <- ipcaps(bed = BED.file,
                     label.file = LABEL.file,
                     lab.col = 2,
                     out = tempdir(),
                     max.thread = 1,
                     seed = 1234)
table(my.cluster$cluster$group,my.cluster$cluster$label)
#   outlier6 pop1 pop2 pop3 pop4 pop5
# 1        2    0    0    0    0    0
# 2        0    0    0    0    0  200
# 3        2    0    0    0  200    0
# 4        0    0    0  199    0    0
# 5        0  199    4    0    0    0
# 6        0    1  196    1    0    0
#Identify top discriminators between groups, for example, group 4 and group 5
top.snp1 <- top.discriminator(my.cluster, 4, 5)
head(top.snp1)
#or, specify the bim file
BIM.file <- system.file("extdata",
                        "ipcaps_example.bim",
                        package = "IPCAPS.BIOC")
top.snp2 <- top.discriminator(my.cluster,
                              4,
                              5,
                              bim.file = BIM.file)
head(top.snp2)
# chr SNP centimorgans position allele1 allele2 Fst
#V5452 1 marker5452 0 54520000 A T 0.11337260
#V2348 1 marker2348 0 23480000 A T 0.11194490
#V8244 1 marker8244 0 82440000 A T 0.09556580
#V5972 1 marker5972 0 59720000 A T 0.08747794
#V3561 1 marker3561 0 35610000 A T 0.08725860
#V8419 1 marker8419 0 84190000 A T 0.08293494
#Alternatively, specify the previous result directory of ipcaps and identify
#top discriminators between groups, for example, group 4 and group 5
previous.res.path <- my.cluster$output.dir
top.snp3 <-top.discriminator(result.path = previous.res.path,
                            use.path = TRUE,
                            group1 = 4,
                            group2 = 5)
head(top.snp3)
#Identify top discriminators between groups, for example, group 4 and group 5
top.snp4 <- top.discriminator(my.cluster,4,5)
head(top.snp4)
#or, specify the bim file
BIM.file <- system.file("extdata",
                        "ipcaps_example.bim",
                        package = "IPCAPS.BIOC")
top.snp5 <- top.discriminator(my.cluster,
                             4,
                             5,
                             bim.file = BIM.file)
dim(top.snp5)
head(top.snp5)
#Here, it is possible to select the top Fst SNPs based on a percentile.
top.snp6 <-top.discriminator(my.cluster,
                            4,
                            5,
                            percentile = 0.9,
                            use.percentile = TRUE)
dim(top.snp6)
head(top.snp6)
#Identify top discriminators between groups, for example, node 7 and node 8
top.snp7 <-top.discriminator(my.cluster,
                             7,
                             8,
                             use.node.number = TRUE)
head(top.snp7)
# chr SNP centimorgans position allele1 allele2 Fst
#V5452 1 marker5452 0 54520000 A T 0.11337260
#V2348 1 marker2348 0 23480000 A T 0.11194490
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.