knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
IPCAPS
is an unsupervised clustering algorithm based on
iterative pruning to capture population structure. This version supports ordinal
data which can be applied directly to SNP data to identify fine-level population
structure and it is built on the iterative pruning Principal Component Analysis
(ipPCA) algorithm by Intarapanich et al. (2009) rubikclust()
from the R package KRIS
.
You can install the released version of IPCAPS from CRAN with:
install.packages("IPCAPS")
Alternatively, you can install the dev version of IPCAPS from Github with
install.packages("remotes") remotes::install_github("kridsadakorn/ipcaps", dependencies = TRUE)
You can see the reference manual from: https://www.biostatgen.org/ipcaps/
Fine-scale subpopulation detection via an SNP-based unsupervised method: A case study on the 1000 Genomes Project resources
Kridsadakorn Chaichoompu, Alisa Wilantho, Pongsakorn Wangkumhang, Sissades Tongsima, Bruno Cavadas, LuĂsa Pereira, and Kristel Van Steen
You can see the extra supplementary information from: https://www.biostatgen.org/paper_ipcaps/
This is a basic example which shows you how to use the packages:
library(IPCAPS) BED.file <- system.file("extdata", "ipcaps_example.bed", package = "IPCAPS") LABEL.file <- system.file("extdata", "ipcaps_example_individuals.txt.gz", package = "IPCAPS") my.cluster1 <- ipcaps(bed = BED.file, label.file = LABEL.file, lab.col = 2, out = tempdir())
The function ipcaps
does unsupervised clusering, and here is the result:
table(my.cluster1$cluster$label, my.cluster1$cluster$group)
The output directory will be indicated in the console or in my.cluster1$output.dir
. All result files are saved at:You can naviage to check the html
visualizations in the output directory.
print(my.cluster1$output.dir) list.files(my.cluster1$output.dir)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.