tuneCLR: Tuning the cyclical learning rate (CLR)

Description Usage Arguments Examples

View source: R/cleavageModelAndPrediction.R

Description

The function is run to find the minimum and maximum values of the cyclical learning rate

Usage

1
2
3
4
5
6
7
8
tuneCLR(
  batch_size2 = 64,
  epochs_find_LR = 20,
  lr_max = 0.1,
  optimizer2 = keras::optimizer_rmsprop(lr = lr_max, decay = 0),
  validation_split2 = 0.2,
  rollmeanSplit = 3
)

Arguments

batch_size2

Batch size

epochs_find_LR

Epochs to run to find the optimal learnig rate, often a low number is needed

lr_max

Maximum approved learning rate

optimizer2

Optimizer

validation_split2

Fraction of the data used to validate the model

rollmeanSplit

smothens the curve by rollmean division of this number

Examples

1
2
3
4
5
6
7
tuneCLR(batch_size2 = 64,
epochs_find_LR = 20,
lr_max = 0.1,
optimizer2 = optimizer_rmsprop(lr=lr_max, decay=0),
validation_split2 =0.2,
rollmeanSplit = 3
)

kristianHoden/smartPARE documentation built on July 3, 2021, 7:10 p.m.