Description Usage Arguments Value Author(s) References
This is a method to choose the range for the refined cross PCF ratio estimator
1 | ChooseRange(X, covariate, Beta, r, bwd, kern = "Epanechnikov", cPCF = NULL)
|
X |
A multivariate point process. X must be of class ppp. |
covariate |
Covariates. The covariates must be a matrix. The rows corresponds to the points in the point pattern and the columns indicates the corresponding covariates that are observed at the location of the point pattern. |
Beta |
Estimated first order parameters. Beta must be a matrix. The number of rows must correspond to the number of covariates. The number of columns must correspond to the number of point types. |
r |
A vector of distances |
bwd |
The bandwidth used |
kern |
The kernel function. Default is Epanechnikov. Alternatively, the kernel function can be Indicator. |
cPCF |
Non parametric estimates of cross PCF ratios. Default is cPCF = NULL. If cPCF = NULL, then the cross PCF ratios are estimated using the function CrossPCF |
Return estimated cross PCF ratios, r distances used, bandwidth used, refined cross PCF ratios and R^*
Kristian Bjørn Hessellund, Ganggang Xu, Yongtao Guan and Rasmus Waagepetersen.
Hessellund, K. B., Xu, G., Guan, Y. and Waagepetersen, R. (2020) Second order semi-parametric inference for multivariate log Gaussian Cox processes.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.