Loop Verbs For Grammar of Data Manipulation
# install.packages("devtools")
devtools::install_github("krzjoa/looplyr")
looplyr
provides easy-to-use shortcuts to apply mutate
/summarise
in loop and and loop operator to process multiple data.frame-like
objects using one dplyr
/magrittr
pipe wrapped with curly brackets.
loop_mutate
suppressMessages(library(dplyr))
suppressMessages(library(glue))
library(looplyr)
cars %>%
loop_mutate(
2:4, paste0("speed.", .x) := speed ** .x
) %>%
head(5)
#> speed dist speed.2 speed.3 speed.4
#> 1 4 2 16 64 256
#> 2 4 10 16 64 256
#> 3 7 4 49 343 2401
#> 4 7 22 49 343 2401
#> 5 8 16 64 512 4096
loop_summarise
quantiles <- c(0.25, 0.50, 0.75)
iris %>%
group_by(Species) %>%
loop_summarise(
quantiles,
glue("Petal.Length.{.x}") := quantile(Petal.Length, .x),
glue("Petal.Width.{.x}") := quantile(Petal.Width, .x)
)
#> # A tibble: 3 x 7
#> Species Petal.Length.0.… Petal.Width.0.25 Petal.Length.0.5 Petal.Width.0.5
#> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 setosa 1.4 0.2 1.5 0.2
#> 2 versic… 4 1.2 4.35 1.3
#> 3 virgin… 5.1 1.8 5.55 2
#> # … with 2 more variables: Petal.Length.0.75 <dbl>, Petal.Width.0.75 <dbl>
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.