Data sources available in laselva

remotes::install_github("ropenscilabs/laselva")
library(laselva)

USA FIA

First, list datasets available:

x <- ls_list_usa()
x

Then request a data for a specific state and variable:

# Northern Mariana Islands - trees
ls_fetch_usa(state = "MP")
#> $MP_tree
#> # A tibble: 2,208 x 207
#>    CN    PLT_CN PREV_TRE_CN INVYR STATECD UNITCD COUNTYCD  PLOT  SUBP  TREE
#>    <int> <int6> <lgl>       <int>   <int>  <int>    <int> <int> <int> <int>
#>  1 2754… 27348… NA           2004      69      1      100 69026     1   100
#>  2 2754… 27348… NA           2004      69      1      100 69026     1   101
#>  3 2754… 27348… NA           2004      69      1      100 69026     1   102
#>  4 2754… 27348… NA           2004      69      1      100 69026     1   103
#>  5 2754… 27348… NA           2004      69      1      100 69026     1   104
#>  6 2754… 27348… NA           2004      69      1      100 69026     1   105
#>  7 2754… 27348… NA           2004      69      1      100 69026     1   106
#>  8 2754… 27348… NA           2004      69      1      100 69026     1   107
#>  9 2754… 27348… NA           2004      69      1      100 69026     1   108
#> 10 2754… 27348… NA           2004      69      1      100 69026     1   109
#> # … with 2,198 more rows, and 197 more variables: CONDID <int>, AZIMUTH <int>,
#> #   DIST <dbl>, PREVCOND <lgl>, STATUSCD <int>, SPCD <int>, SPGRPCD <int>,
#> #   DIA <dbl>, DIAHTCD <int>, HT <int>, HTCD <int>, ACTUALHT <int>,
#> #   TREECLCD <int>, CR <int>, CCLCD <int>, TREEGRCD <lgl>, AGENTCD <lgl>,
#> #   CULL <int>, DAMLOC1 <int>, DAMTYP1 <int>, DAMSEV1 <int>, DAMLOC2 <int>,
#> #   DAMTYP2 <int>, DAMSEV2 <int>, DECAYCD <int>, STOCKING <dbl>,
#> #   WDLDSTEM <lgl>, VOLCFNET <dbl>, VOLCFGRS <dbl>, VOLCSNET <dbl>,
#> #   VOLCSGRS <dbl>, VOLBFNET <dbl>, VOLBFGRS <dbl>, VOLCFSND <dbl>,
#> #   GROWCFGS <lgl>, GROWBFSL <lgl>, GROWCFAL <lgl>, MORTCFGS <lgl>,
#> #   MORTBFSL <lgl>, MORTCFAL <lgl>, REMVCFGS <lgl>, REMVBFSL <lgl>,
#> #   REMVCFAL <lgl>, DIACHECK <int>, MORTYR <lgl>, SALVCD <lgl>, UNCRCD <int>,
#> #   CPOSCD <lgl>, CLIGHTCD <lgl>, CVIGORCD <lgl>, CDENCD <lgl>, CDIEBKCD <lgl>,
#> #   TRANSCD <lgl>, TREEHISTCD <lgl>, DIACALC <dbl>, BHAGE <lgl>, TOTAGE <lgl>,
#> #   CULLDEAD <lgl>, CULLFORM <lgl>, CULLMSTOP <lgl>, CULLBF <lgl>,
#> #   CULLCF <lgl>, BFSND <lgl>, CFSND <lgl>, SAWHT <lgl>, BOLEHT <lgl>,
#> #   FORMCL <lgl>, HTCALC <int>, HRDWD_CLUMP_CD <int>, SITREE <lgl>,
#> #   CREATED_BY <lgl>, CREATED_DATE <chr>, CREATED_IN_INSTANCE <int>,
#> #   MODIFIED_BY <lgl>, MODIFIED_DATE <chr>, MODIFIED_IN_INSTANCE <int>,
#> #   MORTCD <lgl>, HTDMP <dbl>, ROUGHCULL <lgl>, MIST_CL_CD <lgl>,
#> #   CULL_FLD <int>, RECONCILECD <lgl>, PREVDIA <lgl>, FGROWCFGS <lgl>,
#> #   FGROWBFSL <lgl>, FGROWCFAL <lgl>, FMORTCFGS <lgl>, FMORTBFSL <lgl>,
#> #   FMORTCFAL <lgl>, FREMVCFGS <lgl>, FREMVBFSL <lgl>, FREMVCFAL <lgl>,
#> #   P2A_GRM_FLG <chr>, TREECLCD_NERS <lgl>, TREECLCD_SRS <lgl>,
#> #   TREECLCD_NCRS <lgl>, TREECLCD_RMRS <lgl>, STANDING_DEAD_CD <int>,
#> #   PREV_STATUS_CD <lgl>, PREV_WDLDSTEM <lgl>, …
# Guam - seedling
ls_fetch_usa(state = "GU", what = "seedling")
#> $GU_seedling
#> # A tibble: 362 x 32
#>    CN    PLT_CN INVYR STATECD UNITCD COUNTYCD  PLOT  SUBP CONDID  SPCD SPGRPCD
#>    <int> <int6> <int>   <int>  <int>    <int> <int> <int>  <int> <int>   <int>
#>  1 2140… 19651…  2002      66      1       10 66007     1      1  6042      54
#>  2 2140… 19651…  2002      66      1       10 66007     1      1  7282      54
#>  3 2513… 19651…  2002      66      1       10 66007     1      1  7987      54
#>  4 2140… 19651…  2002      66      1       10 66007     2      1  6042      54
#>  5 2513… 19651…  2002      66      1       10 66007     2      1  7987      54
#>  6 2140… 19651…  2002      66      1       10 66007     3      1  6042      54
#>  7 2140… 19651…  2002      66      1       10 66007     3      1  7091      54
#>  8 2140… 19651…  2002      66      1       10 66007     3      1  7282      54
#>  9 2140… 19651…  2002      66      1       10 66007     4      1  6042      54
#> 10 2513… 19651…  2002      66      1       10 66007     4      1  7987      54
#> # … with 352 more rows, and 21 more variables: STOCKING <dbl>, TREECOUNT <int>,
#> #   TOTAGE <lgl>, CREATED_BY <lgl>, CREATED_DATE <chr>,
#> #   CREATED_IN_INSTANCE <int>, MODIFIED_BY <lgl>, MODIFIED_DATE <chr>,
#> #   MODIFIED_IN_INSTANCE <int>, TREECOUNT_CALC <int>, TPA_UNADJ <dbl>,
#> #   CYCLE <int>, SUBCYCLE <int>, DAMAGE_AGENT_CD1_SRS <lgl>,
#> #   PCT_AFFECTED_DAMAGE_AGENT1_SRS <lgl>, DAMAGE_AGENT_CD2_SRS <lgl>,
#> #   PCT_AFFECTED_DAMAGE_AGENT2_SRS <lgl>, DAMAGE_AGENT_CD3_SRS <lgl>,
#> #   PCT_AFFECTED_DAMAGE_AGENT3_SRS <lgl>, AGECD_RMRS <lgl>,
#> #   COUNTCHKCD_RMRS <lgl>

Australia

Queensland, Australian data

x <- ls_fetch_aus()
names(x)
#> [1] "AuxiliaryData.csv"       "TreeMeasurementData.csv"
#> [3] "UnderstoryData.csv"      "VoucherData.csv"
x[[1]]
#> # A tibble: 560 x 8
#>    epNumber family genus taxon taxonAuth ALA_APNI_TAXON_… ALA_APNI_TAXON_…
#>    <chr>    <chr>  <chr> <chr> <chr>     <chr>            <chr>           
#>  1 EP2      Annon… Melo… Melo… Melodoru… urn:lsid:biodiv… http://biodiver…
#>  2 EP2      Apocy… Melo… Melo… Melodinu… urn:lsid:biodiv… http://biodiver…
#>  3 EP2      Apocy… Pars… Pars… Parsonsi… urn:lsid:biodiv… http://biodiver…
#>  4 EP2      Asple… Aspl… Aspl… Aspleniu… urn:lsid:biodiv… http://biodiver…
#>  5 EP2      Celas… Hipp… Hipp… Hippocra… urn:lsid:biodiv… http://biodiver…
#>  6 EP2      Cyper… Gahn… Gahn… Gahnia a… urn:lsid:biodiv… http://biodiver…
#>  7 EP2      Dryop… Cove… Cove… Coveniel… urn:lsid:biodiv… http://biodiver…
#>  8 EP2      Dryop… Last… Last… Lastreop… urn:lsid:biodiv… http://biodiver…
#>  9 EP2      Fabac… Aust… Aust… Austrost… urn:lsid:biodiv… http://biodiver…
#> 10 EP2      Hemer… Dian… Dian… Dianella… urn:lsid:biodiv… http://biodiver…
#> # … with 550 more rows, and 1 more variable: classification <chr>

Europe

Tree inventory data for 21 countries in Europe

res <- ls_fetch_eu()
names(res)
#> [1] "genus"   "species"
res$genus
#> # A tibble: 589,657 x 4
#>          x       y country genus_name
#>      <int>   <int> <chr>   <chr>     
#>  1 4609500 2822500 Austria Abies     
#>  2 4585500 2692500 Austria Abies     
#>  3 4662500 2816500 Austria Abies     
#>  4 4787500 2729500 Austria Abies     
#>  5 4687500 2735500 Austria Abies     
#>  6 4572500 2741500 Austria Abies     
#>  7 4794500 2759500 Austria Abies     
#>  8 4589500 2725500 Austria Abies     
#>  9 4417500 2687500 Austria Abies     
#> 10 4742000 2702000 Austria Abies     
#> # … with 589,647 more rows

France

Tree inventory data for 21 countries in Europe

res <- ls_fetch_fra(year = 2017)
names(res)
#>  [1] "cover_forest_2017.csv"      "dead_trees_forest_2017.csv"
#>  [3] "dead_trees_poplar_2017.csv" "documentation_2017.csv"    
#>  [5] "documentation_flora.csv"    "ecology_2017.csv"          
#>  [7] "flora_2017.csv"             "plots_forest_2017.csv"     
#>  [9] "plots_poplar_2017.csv"      "trees_forest_2017.csv"     
#> [11] "trees_poplar_2017.csv"
res[[1]]
#> # A tibble: 27,381 x 4
#>        idp espar   tca   tcl
#>      <int> <chr> <int> <int>
#>  1 1200006 02       10    10
#>  2 1200006 10        0     0
#>  3 1200006 17C      70    60
#>  4 1200006 21C       0     0
#>  5 1200006 22M       0     0
#>  6 1200006 24       30    30
#>  7 1200008 02       40    40
#>  8 1200008 09        0     0
#>  9 1200008 11       70    60
#> 10 1200014 02      100   100
#> # … with 27,371 more rows

Spain

Tree inventory data for 17 regions in Spain

res = ls_fetch_esp(location = "alava")
names(res)
#> [1] "sig_01_tcm36_293906"  "ifn3p01_tcm36_293907"
res$sig_01_tcm36_293906$Mayores_exs
#> # A tibble: 27,687 x 27
#>    Estadillo Cla   Subclase nArbol OrdenIf3 OrdenIf2 Rumbo Distanci Especie
#>        <int> <chr> <chr>     <int>    <int>    <int> <int>    <dbl>   <int>
#>  1         2 A     4C            1        1        0     4     3.30      28
#>  2         2 A     4C            2        2        0     7     8.90      28
#>  3         2 A     4C            3        3        0    34     6.60      28
#>  4         2 A     4C            4        4        0    43     4.5       28
#>  5         2 A     4C            5        5        0    52     8.5       28
#>  6         2 A     4C            6        6        0    63     6.30      28
#>  7         2 A     4C            7        7        0    76     8.30      28
#>  8         2 A     4C            8        8        0    81     1.60      28
#>  9         2 A     4C            9        9        0    96     7.70      28
#> 10         2 A     4C           10       10        0    96     4.5       28
#> # … with 27,677 more rows, and 18 more variables: EspecieOriginal <int>,
#> #   Dn1 <int>, Dn2 <int>, Ht <dbl>, Calidad <int>, Forma <int>, ParEsp <int>,
#> #   Agente <int>, Import <int>, Elemento <int>, Estrato <int>, CD <int>,
#> #   G <dbl>, VCC <dbl>, VSC <dbl>, IAVC <dbl>, VLE <dbl>, Fac <int>

Japan

Tree inventory data for Japan

res = ls_fetch_jpn()
names(res)
#> [1] "species_list" "site_list"    "tree_data"    "metadata"
res$species_list
#> # A tibble: 365 x 6
#>    SpJapan    Name           NameAuth                 Family    Synonym FuncType
#>    <chr>      <chr>          <chr>                    <chr>       <int>    <int>
#>  1 maruhati   Cyathea merte… Cyathea mertensiana (Ku… Cyatheac…       1        3
#>  2 inugaya    Cephalotaxus … Cephalotaxus harrington… Cephalot…       1        1
#>  3 hinoki     Chamaecyparis… Chamaecyparis obtusa (S… Cupressa…       1        1
#>  4 sugi       Cryptomeria j… Cryptomeria japonica (L… Cupressa…       1        1
#>  5 nezumisasi Juniperus rig… Juniperus rigida Sieb. … Cupressa…       1        1
#>  6 hinokiasu… Thujopsis dol… Thujopsis dolabrata Sie… Cupressa…       1        1
#>  7 hiba       Thujopsis dol… Thujopsis dolabrata Sie… Cupressa…       0        1
#>  8 momi       Abies firma    Abies firma Sieb. et Zu… Pinaceae        1        1
#>  9 uraziromo… Abies homolep… Abies homolepis Sieb. e… Pinaceae        1        1
#> 10 oosirabiso Abies mariesii Abies mariesii Masters   Pinaceae        1        1
#> # … with 355 more rows
res$tree_data$AI_BC1
#> # A tibble: 2,322 x 38
#>    grid_xcord grid_ycord tag_no indv_no stem_xcord stem_ycord sp_jpn sp   
#>         <int>      <int> <chr>  <chr>        <dbl>      <dbl> <chr>  <chr>
#>  1          0          0 B770   B770           2.6        5.2 aohada Ilex…
#>  2          0          0 B774   B774           3.4        9   aohada Ilex…
#>  3          0          0 B772   B772           3.4        8   akama… Pinu…
#>  4          0          0 B775   B775           2.2        3.7 akama… Pinu…
#>  5          0          0 B786   B786           7.8        5.9 asebi  Pier…
#>  6          0          0 B792   B792           6.7        9.3 konara Quer…
#>  7          0          0 B800   B800           9.4        5   konara Quer…
#>  8          0          0 B785   B785           7.5        4.9 konara Quer…
#>  9          0          0 B780   B780           2.4        1.6 konara Quer…
#> 10          0          0 B765   B765           0.7        9   konara Quer…
#> # … with 2,312 more rows, and 30 more variables: gbh2004 <dbl>, gbh2005 <dbl>,
#> #   gbh2006 <dbl>, gbh2007 <dbl>, gbh2008 <dbl>, gbh2009 <dbl>, dl2004 <int>,
#> #   dl2005 <int>, dl2006 <int>, dl2007 <int>, dl2008 <int>, dl2009 <int>,
#> #   rec2004 <int>, rec2005 <int>, rec2006 <int>, rec2007 <int>, rec2008 <int>,
#> #   rec2009 <int>, error2004 <int>, error2005 <int>, error2006 <int>,
#> #   error2007 <int>, error2008 <int>, error2009 <int>, s_date2004 <int>,
#> #   s_date2005 <int>, s_date2006 <int>, s_date2007 <int>, s_date2008 <int>,
#> #   s_date2009 <int>


kunstler/laselva documentation built on April 12, 2021, 5:24 a.m.