# dst: Student t distribution with location mu, scale sigma, and nu... In kuperov/acfunc: Extra distributions for Bayesian analysis

## Description

The pdf of the Student t distribution is given in Gelman et al (2014, p.578):

t(x | μ, σ, ν) = \frac{γ≤ft(\frac{ν+1}{2}\right)}{γ(\frac{ν}{2})√{νπ}σ}≤ft(1 + \frac{1}{ν}≤ft(\frac{x-μ}{σ}\right)^2\right)^{-\frac{ν+1}{2}}

## Usage

 1 2 3 4 5 dst(x, df, location = 0, scale = 1, log = FALSE) rst(n, df, location = 0, scale = 1) pst(q, df, location = 0, scale = 1) 

## Arguments

 x vector of quantiles df degrees of freedom location mu parameter scale parameter (can be written sigma or sigma^2; this is 'sigma^2' in the above expression) log return logarithm of value if true n number of random deviates to draw q vector of quantiles

## Value

'dst' gives the density and 'rst' generates random deviates.

## References

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2014). Bayesian data analysis (3E). Boca Raton, FL, USA: Chapman & Hall/CRC.

kuperov/acfunc documentation built on Aug. 5, 2017, 8:35 a.m.