Description Usage Arguments Value References
This function estimates the covariance of a tensor random variable. We assume the covariance of the tensor r.v. has a seperable Kronecker covariance structure, i.e. \boldsymbol{Σ}=\boldsymbol{Σ}_{m}\otimes\cdots\otimes\boldsymbol{Σ}_{1}. This algorithm is described in Manceur, A. M., & Dutilleul, P. (2013).
1 | kroncov(Tn)
|
Tn |
A p_1\times\cdots p_m\times n data array, where n is the sample size. |
lambda |
The normalizing constant. |
S |
A matrix lists with each element being the individual estimation of the seperable Kronecker covariance element \boldsymbol{Σ}_m,…,\boldsymbol{Σ}_1. |
Manceur, A. M., & Dutilleul, P. (2013). Maximum likelihood estimation for the tensor normal distribution: Algorithm, minimum sample size, and empirical bias and dispersion. Journal of Computational and Applied Mathematics, 239, 37-49.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.