%>% | R Documentation |
clean_raw_data
test lorem impo.
Like dplyr, ggvis also uses the pipe function, %>%
to turn
function composition into a series of imperative statements.
clean_raw_data(input_file, output_file, tmp_dir, timezone = "Etc/UTC",
speed_limit = 110, acceleration_limit = 10, date_min = NA,
date_max = NA, cores = 7)
input_file |
file with the gps data to be cleaned |
output_file |
file to write the output of the processing |
tmp_dir |
where to place uncompressed input file |
timezone |
represents the timezone |
speed_limit |
numeric which contains the speed threshold (km/h) |
acceleration_limit |
numeric which contains the acceleration threshold(m/s^2) |
date_min |
Select data after this date (format:YYYY-MM-AA) |
date_max |
Select data before this date (format:YYYY-MM-AA) |
cores |
number of cores to be used |
lhs , rhs |
A visualisation and a function to apply to it |
data
## Not run:
#do not run
## End(Not run)
# Instead of
layer_points(ggvis(mtcars, ~mpg, ~wt))
# you can write
mtcars %>% ggvis(~mpg, ~wt) %>% layer_points()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.