# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
matPrometheeI <- function(datVec, prefFunction, parms) {
.Call('_RMCriteria_matPrometheeI', PACKAGE = 'RMCriteria', datVec, prefFunction, parms)
}
#' Calculates PROMETHEE I method.
#'
#' @param datMat A matrix containing the data from criterias and alternatives.
#' @param vecWeights A vector of weights for each criteria.
#' @param prefFunction A numerical vector to indicate the type of the
#' Preference Function:
#' \itemize{
#' \item \code{prefFunction = 0} Gaussian Preference Function
#' \item \code{prefFunction = 1} Usual Preference Function
#' \item \code{prefFunction = 2} U-Shape Preference Function
#' \item \code{prefFunction = 3} V-Shape Preference Function
#' \item \code{prefFunction = 4} Level Preference Function
#' \item \code{prefFunction = 5} V-Shape Preference and Indiference Function
#' }
#' @param parms a numerical matrix with parameters associated to the Preference
#' Function. They're defined as a matrix of n columns and m rows. The maximum
#' number of parameters is 3 and m is the number of criterias. The parameters
#' are:
#' \itemize{
#' \item{Indifference Threshold (\code{q})}
#' \item{Preference Threshold (\code{p})}
#' \item{Gaussian Threshold (\code{s})}
#' }
#' @param normalize A boolean to normalize the index.
#' @keywords internal
#' @export
PrometheeI <- function(datMat, vecWeights, prefFunction, parms, normalize) {
.Call('_RMCriteria_PrometheeI', PACKAGE = 'RMCriteria', datMat, vecWeights, prefFunction, parms, normalize)
}
matPrometheeII <- function(datVec, prefFunction, parms) {
.Call('_RMCriteria_matPrometheeII', PACKAGE = 'RMCriteria', datVec, prefFunction, parms)
}
#' Calculates PROMETHEE II method.
#'
#' @param datMat A matrix containing the data from criterias and alternatives.
#' @param vecWeights A vector of weights for each criteria.
#' @param prefFunction A numerical vector to indicate the type of the
#' Preference Function:
#' \itemize{
#' \item \code{prefFunction = 0} Gaussian Preference Function
#' \item \code{prefFunction = 1} Usual Preference Function
#' \item \code{prefFunction = 2} U-Shape Preference Function
#' \item \code{prefFunction = 3} V-Shape Preference Function
#' \item \code{prefFunction = 4} Level Preference Function
#' \item \code{prefFunction = 5} V-Shape Preference and Indiference Function
#' }
#' @param parms a numerical matrix with parameters associated to the Preference
#' Function. They're defined as a matrix of n columns and m rows. The maximum
#' number of parameters is 3 and m is the number of criterias. The parameters
#' are:
#' \itemize{
#' \item{Indifference Threshold (\code{q})}
#' \item{Preference Threshold (\code{p})}
#' \item{Gaussian Threshold (\code{s})}
#' }
#' @param normalize A boolean to normalize the index.
#' @return Preference Matrix
#' @export
PrometheeII <- function(datMat, vecWeights, prefFunction, parms, normalize) {
.Call('_RMCriteria_PrometheeII', PACKAGE = 'RMCriteria', datMat, vecWeights, prefFunction, parms, normalize)
}
matPrometheeIII <- function(datVec, prefFunction, parms) {
.Call('_RMCriteria_matPrometheeIII', PACKAGE = 'RMCriteria', datVec, prefFunction, parms)
}
#' Calculates PROMETHEE III method.
#' @param datMat A matrix containing the data from criterias and alternatives.
#' @param vecWeights A vector of weights for each criteria.
#' @param prefFunction A numerical vector to indicate the type of the
#' Preference Function:
#' \itemize{
#' \item \code{prefFunction = 0} Gaussian Preference Function
#' \item \code{prefFunction = 1} Usual Preference Function
#' \item \code{prefFunction = 2} U-Shape Preference Function
#' \item \code{prefFunction = 3} V-Shape Preference Function
#' \item \code{prefFunction = 4} Level Preference Function
#' \item \code{prefFunction = 5} V-Shape Preference and Indiference Function
#' }
#' @param alphaVector A numerical vector to indicate the size of the interval
#' for each alternative in Promethee III ranking.
#' @param parms a numerical matrix with parameters associated to the Preference
#' Function. They're defined as a matrix of n columns and m rows. The maximum
#' number of parameters is 3 and m is the number of criterias. The parameters
#' are:
#' \itemize{
#' \item{Indifference Threshold (\code{q})}
#' \item{Preference Threshold (\code{p})}
#' \item{Gaussian Threshold (\code{s})}
#' }
#' @return Preference Matrix
#' @export
PrometheeIII <- function(datMat, vecWeights, prefFunction, alphaVector, parms) {
.Call('_RMCriteria_PrometheeIII', PACKAGE = 'RMCriteria', datMat, vecWeights, prefFunction, alphaVector, parms)
}
#' Calculates PROMETHEE IV method.
#'
#' @param datMat A matrix containing the data from criterias and alternatives.
#' @param vecWeights A vector of weights for each criteria.
#' @param prefFunction A numerical vector to indicate the type of the
#' Preference Function:
#' \itemize{
#' \item \code{prefFunction = 0} Gaussian Preference Function
#' \item \code{prefFunction = 1} Usual Preference Function
#' \item \code{prefFunction = 2} U-Shape Preference Function
#' \item \code{prefFunction = 3} V-Shape Preference Function
#' \item \code{prefFunction = 4} Level Preference Function
#' \item \code{prefFunction = 5} V-Shape Preference and Indiference Function
#' }
#' @param parms A numerical matrix with parameters associated to the Preference
#' Function. They're defined as a matrix of n columns and m rows. The maximum
#' number of parameters is 3 and m is the number of criterias. The parameters
#' are:
#' \itemize{
#' \item{Indifference Threshold (\code{q})}
#' \item{Preference Threshold (\code{p})}
#' \item{Gaussian Threshold (\code{s})}
#' }
#' @param normalize A boolean to normalize the index.
#' @return Preference Matrix
#' @export
PrometheeIV <- function(datMat, vecWeights, prefFunction, parms, normalize) {
.Call('_RMCriteria_PrometheeIV', PACKAGE = 'RMCriteria', datMat, vecWeights, prefFunction, parms, normalize)
}
#' Calculates PROMETHEE IV KERNEL method.
#' @param datMat A matrix containing the data from criterias and alternatives.
#' @param vecWeights A vector of weights for each criteria.
#' @param prefFunction A numerical vector to indicate the type of the
#' Preference Function:
#' \itemize{
#' \item \code{prefFunction = 0} Gaussian Preference Function
#' \item \code{prefFunction = 1} Usual Preference Function
#' \item \code{prefFunction = 2} U-Shape Preference Function
#' \item \code{prefFunction = 3} V-Shape Preference Function
#' \item \code{prefFunction = 4} Level Preference Function
#' \item \code{prefFunction = 5} V-Shape Preference and Indiference Function
#' }
#' @param parms a numerical matrix with parameters associated to the Preference
#' Function. They're defined as a matrix of n columns and m rows. The maximum
#' number of parameters is 3 and m is the number of criterias. The parameters
#' are:
#' \itemize{
#' \item{Indifference Threshold (\code{q})}
#' \item{Preference Threshold (\code{p})}
#' \item{Gaussian Threshold (\code{s})}
#' }
#' @param band A numerical matrix with m rows corresponding to each criteria
#' and one column corresponding to the bandwitch estimated for that criteria.
#' This bandwitch is used for Kernel Density Estimation in Promethee IV Kernel.
#' By default, it is calculated using bw.nrd0.
#' @param normalize A boolean to normalize the index.
#' @return Preference Matrix
#' @export
PrometheeIVKernel <- function(datMat, vecWeights, prefFunction, parms, band, normalize) {
.Call('_RMCriteria_PrometheeIVKernel', PACKAGE = 'RMCriteria', datMat, vecWeights, prefFunction, parms, band, normalize)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.