powerANOVA
is an R package intended as a companion to the article "A Tutorial on Using the Paired t-Test for Power Calculations in Repeated Measures ANOVA". Supplementary materials for the article can be found on osf.
powerANOVA
is not on CRAN. The development version of powerANOVA
can be installed directly from this GitHub repository using the additional package devtools
.
# install devtools
install.packages("devtools")
# install subgroupsem
devtools::install_github("langenberg/powerANOVA")
First, load the package using the following command:
library(powerANOVA)
powerANOVA
includes an easy to use GUI. The GUI is a shiny app which can be loaded using the following command:
power_gui()
The command will open a browser tab. The GUI is very self-explaining. Simply close the browser when you want to terminate the GUI.
convert_cohens_d_petasq(cohens_d, n, population = TRUE)
convert_petasq_cohens_d(p_eta_sq, n, population = TRUE)
convert_petasq_f2(p_eta_sq)
convert_F_petasq(Fval, df1, df2)
convert_petasq_F(p_eta_sq, df1, df2)
power_plot_cohens_d(n, cohens_d, alpha = 0.05)
power_plot_mu_cov_contrast(n, mu, Sigma, contrast, alpha = 0.05)
power_plot_p_eta_sq(n, p_eta_sq, df1, alpha = 0.05)
power_cohens_d(n, cohens_d, alpha = 0.05)
E.g.:
``` mu <- 58 var <- 7200
cohens_d <- mu/sqrt(var)
power_cohens_d(n = 19, cohens_d = cohens_d) ```
power_petasq(n, p_eta_sq, df1, alpha = 0.05)
E.g.:
``` p_eta_sq <- 0.3296746
power_petasq(n = 19, p_eta_sq = p_eta_sq) ```
power_mu_cov_contrast(n, mu, Sigma, contrast, alpha = 0.05)
E.g.:
``` means_dv <- matrix(c(492, 511, 483, 444), ncol = 1) names(means_dv) <- c("A1.B1", "A1.B2", "A2.B1", "A2.B2")
vcov_dv <- matrix(c( 9000, 7200, 7200, 7200, 7200, 9000, 7200, 7200, 7200, 7200, 9000, 7200, 7200, 7200, 7200, 9000 ), ncol = 4, nrow = 4)
colnames(vcov_dv) <- c("A1.B1", "A1.B2", "A2.B1", "A2.B2") rownames(vcov_dv) <- c("A1.B1", "A1.B2", "A2.B1", "A2.B2")
contrast_vec <- matrix(c(1, -1, -1, 1), nrow = 1)
colnames(contrast_vec) <- c("A1.B1", "A1.B2", "A2.B1", "A2.B2") rownames(contrast_vec) <- c("difference")
power_mu_cov_contrast(n = 19, mu = means_dv, Sigma = vcov_dv, contrast = contrast_vec) ```
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.