knitr::opts_chunk$set(echo = TRUE)
Observed Eddy flux tower Evapotranpiration against simulated ET that includes soil evaporation and vegetation evapo-transpiration
current.folder <- "2019-10-14_5000" knitr::include_graphics(file.path("figures", current.folder, "ET_Obs_vs_model_daily_all_years_points_lines.jpeg"))
Monthly sums are compared after removing data gaps, so these would be underestimations of monthly totals, but correct comparisons.
knitr::include_graphics(file.path("figures", current.folder, "ET_Obs_vs_model_monthly.jpeg"))
current.folder <- "2019-10-14_5000" knitr::include_graphics(file.path("figures", current.folder, "GPP_Obs_vs_model_daily_all_years_points_lines.jpeg"))
knitr::include_graphics(file.path("figures", current.folder, "GPP_Obs_vs_model_monthly.jpeg"))
Observed stream guage against simulated QRUNOFF = QOVER(overland flow) + QDRAI (sub-surface drainage)
knitr::include_graphics(file.path("figures", current.folder, "QRUNOFF_Obs_vs_model_daily.jpeg"))
knitr::include_graphics(file.path("figures", current.folder, "QRUNOFF_Obs_vs_model_monthly.jpeg"))
knitr::include_graphics(file.path("figures", current.folder, "Sensitivity/Sensitivity of monthly ET to parameters_2016-04.jpeg"))
knitr::include_graphics(file.path("figures", current.folder, "Sensitivity/Sensitivity of monthly ET to parameters_2016-07.jpeg"))
knitr::include_graphics(file.path("figures", current.folder, "Sensitivity/Sensitivity of monthly runoff to parameters_2016-04.jpeg"))
knitr::include_graphics(file.path("figures", current.folder, "Sensitivity/Sensitivity of monthly runoff to parameters_2016-07.jpeg"))
knitr::include_graphics(file.path("figures", current.folder, "Sensitivity/Sensitivity of daily soil water content at 1 m to parameters_2016-04.jpeg"))
knitr::include_graphics(file.path("figures", current.folder, "Sensitivity/Sensitivity of daily soil water content at 1 m to parameters_2016-07.jpeg"))
Average across best-fit parameter ensembles
Source = Water reaching soil surface = QDRIP Sink = QET + QRUNOFF where, QET = QSOIL + QVEGE + QVEGT QUNOFF = QOVER + QDRAI Water balance = Source - Sink
Ideally, delta TWS ~= Water balance
Below runoff.sim.obs = QRUNOFF/obs.runoff; ET.sim.obs = QET/obs.ET, QDRAI.QOVER = QDRAI/QOVER, QDRAI.obs.runoff = QDRAI/obs.runoff
Average aross best-fit simulations for Runoff
writeLines("td, th { padding : 6px } th { background-color : brown ; color : white; border : 10px solid white; } td { color : brown ; border : 1px solid brown }", con = "mystyle.css") run.table <- read.csv(file = file.path("data", current.folder, "run.table.dryssn.csv"), header = TRUE) knitr::kable(run.table, format = "markdown")
Average aross best-fit simulations for Runoff
writeLines("td, th { padding : 6px } th { background-color : brown ; color : white; border : 10px solid white; } td { color : brown ; border : 1px solid brown }", con = "mystyle.css") wb.table <- read.csv(file = file.path("data", current.folder, "wb.table.csv"), header = TRUE) knitr::kable(wb.table, format = "markdown")
Flux/Store | Longname | Unit -----------|---------------------------------|-------- TWS | total water storage | mm TWS_MONTH_END | total water storage at the end of a month | mm RAIN | atmospheric rain | mm QINTR | interception | mm QDRIP | Throughfall | mm QSOIL | Ground evaporation (soil/snow evaporation + soil/snow sublimation - dew | mm QVEGE | canopy evaporation | mm QVEGT | canopy transpiration | mm QRUNOFF | total liquid runoff (does not include QSNWCPICE) | mm/s QOVER | surface runoff | mm/s QRGWL | surface runoff at glaciers (liquid only), wetlands, lakes | mm/s QCHARGE | aquifer recharge rate (vegetated landunits only) | mm QDRAI | sub-surface drainage | mm ERRH2O | total water conservation error | mm WA | water in the unconfined aquifer (vegetated landunits only) | mm ZWT_PERCH | perched water table depth (vegetated landunits only) | m ZWT | water table depth (vegetated landunits only)| m H2OSFC | surface water depth | mm
writeLines("td, th { padding : 6px } th { background-color : brown ; color : white; border : 10px solid white; } td { color : brown ; border : 1px solid brown }", con = "mystyle.css") current.folder <- "2019-10-14_5000" dset1 <- read.csv(file = file.path("data", current.folder, "wb.table.all.csv"), header = TRUE) knitr::kable(dset1, format = "markdown")
Observed absolute soil water content is from vertical TDR (0-15 cm) that is locally calibrated
knitr::include_graphics(file.path("figures", current.folder, "swc_Obs_vs_model_daily_vertical.jpeg"))
Best-fits are chosen in two steps: (1) Top-ten simulations for each depth (10, 40 and 100 cm) are chosen by maximising fit (minimising RMSE) with plot-wide opportunistic observations of absolute water content at those detphs, (2) a subset of (a) are then chosen such that they fit well (maximising R-squared) with water content from horizontal TDRs (depths 10, 40 and 100 cm) at a point location. As depth-specific calibration was not available for the horizontal probes, they were originally calibrated with the same local calibration as that of the vertical TDR probe. Thus only depth-specific relative variation in water content from the horizontal probes (via R-squared) is used in finding best-fits. For easy visulation horizontal probes values are normalised in the range of simulations from (1).
Panel labels represent depths in cm
knitr::include_graphics(file.path("figures", current.folder, "swc_Obs_vs_model_daily_horizontal_with_steph_mean.jpeg"))
Panel labels represent depths in m
knitr::include_graphics(file.path("figures", current.folder, "swc_model_daily_all_depths_params.top.few.jpeg"))
knitr::include_graphics(file.path("figures", current.folder, "swc_mean_across_params.top.few.jpeg"))
knitr::include_graphics(file.path("figures", current.folder, "BTRAN_model_daily_bestfit_params.top.few_CI.jpeg"))
Heatmap
knitr::include_graphics(file.path("figures", current.folder, "psi_mean_across_params.top.few_full.jpeg"))
knitr::include_graphics(file.path("figures", current.folder, "psi_model_daily_all_depths_params.top.few_full.jpeg"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.