ROC | R Documentation |
This function calculates ROC Curves and AUC values with 95% confidence range. It also works for multi-categorical models.
ROC(tag, score, multis = NA)
tag |
Vector. Real known label |
score |
Vector. Predicted value or model's result |
multis |
Data.frame. Containing columns with each category score (only used when more than 2 categories coexist) |
List with ROC's results, area under the curve (AUC) and their CI.
To plot results, use the mplot_roc()
function.
Other Machine Learning:
conf_mat()
,
export_results()
,
gain_lift()
,
h2o_automl()
,
h2o_predict_MOJO()
,
h2o_selectmodel()
,
impute()
,
iter_seeds()
,
lasso_vars()
,
model_metrics()
,
model_preprocess()
,
msplit()
Other Model metrics:
conf_mat()
,
errors()
,
gain_lift()
,
loglossBinary()
,
model_metrics()
data(dfr) # Results for AutoML Predictions
lapply(dfr[c(1, 2)], head)
# ROC Data for Binomial Model
roc1 <- ROC(dfr$class2$tag, dfr$class2$scores)
lapply(roc1, head)
# ROC Data for Multi-Categorical Model
roc2 <- ROC(dfr$class3$tag, dfr$class3$score,
multis = subset(dfr$class3, select = -c(tag, score))
)
lapply(roc2, head)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.