knitr::opts_chunk$set( echo = TRUE, warning = FALSE, message = FALSE, fig.width = 8, fig.height = 6 ) library(FLCore) library(FLBRP) library(FLasher) library(ggplot2) library(plyr) library(dplyr)
The FLBRP rebuild method projects population recovery from different initial depletion levels:
# Load stock assessment data load("data/icesdata.RData") # Fit stock-recruitment relationships eql <- function(x, model="bevholt") { sr <- fmle(as.FLSR(x, model=model)) brp(FLBRP(x, sr=list(model=model, params=params(sr)))) } # Calculate rebuilding trajectories stks <- names(icesdata) bh <- dlply(stks, function(id) { eq <- eql(icesdata[[id]]) rebuildTime(rebuild(eq)) })
The biodyn rebuild method provides an alternative approach:
# Setup parameters priors <- data.frame( r = c(0.5), k = c(1000), p = c(1) ) # Project rebuilding bds <- dlply(priors, function(x) { bd <- biodyn(params=FLPar(r=x$r, k=x$k, p=x$p)) rebuild(bd) })
Compare rebuilding trajectories across methods:
ggplot(rbind( cbind(Method="Age-structured", ldply(bh)), cbind(Method="Biomass dynamic", ldply(bds)))) + geom_line(aes(initial, year, color=Method)) + labs(x="Initial Depletion (B/BMSY)", y="Years to Recovery", title="Stock Rebuilding Trajectories") + theme_minimal()
The two methods provide complementary approaches for estimating rebuilding times:
Both methods demonstrate how initial depletion level affects recovery time, with implications for management strategy evaluation. ```
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.