rocFn | R Documentation |
Calculates the coordinates for a Receiver Operating Characteristic (ROC) curve
rocFn(labels, scores)
## S4 method for signature 'numeric,numeric'
rocFn(labels, scores)
labels |
Binary vector of true labels |
scores |
Numeric vector of prediction scores |
A data frame containing:
TPR - True Positive Rate (Sensitivity)
FPR - False Positive Rate (1-Specificity)
labels - Ordered labels
reference - Sorted scores
## Not run:
labels <- c(1,0,1,1,0)
scores <- c(0.9, 0.1, 0.8, 0.7, 0.3)
roc_coords <- rocFn(labels, scores)
## End(Not run)
# In this example, we first generate sample data for state and indicator vectors.
# Generate sample data
state <- c(0.5, 2.3, 1.2, 1.8, 3.0, 0.7)
indicator <- c(0.6, 2.2, 1.1, 1.9, 2.8, 0.5)
# Then, we call the roc function to calculate ROC statistics and print the results.
# Calculate ROC statistics
roc_result=roc(state, indicator)
# Print the ROC statistics
roc_result
#Plot the ROC curve using the ggplot2 package.
library(ggplot2)
ggplot(roc_result, aes(x = FPR, y = TPR)) +
geom_line() +
geom_abline(intercept = 0, slope = 1, linetype = "dashed") +
labs(x = "False Positive Rate (FPR)", y = "True Positive Rate (TPR)") +
ggtitle("ROC Curve") +
theme_minimal()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.