egp | R Documentation |
This function provides the log-likelihood and quantiles for the three different families presented
in Papastathopoulos and Tawn (2013) and the two proposals of Gamet and Jalbert (2022), plus exponential tilting. All of the models contain an additional parameter, \kappa \ge 0
.
All families share the same tail index as the generalized Pareto distribution, while allowing for lower thresholds.
For most models, the distribution reduce to the generalised Pareto when \kappa=1
(for models gj-tnorm
and logist
, on the boundary of the parameter space when kappa \to 0
.
egp.retlev
gives the return levels for the extended generalised Pareto distributions
xdat |
vector of observations, greater than the threshold |
thresh |
threshold value |
par |
parameter vector ( |
model |
a string indicating which extended family to fit |
show |
logical; if |
p |
extreme event probability; |
plot |
logical; if |
For return levels, the p
argument can be related to T
year exceedances as follows:
if there are n_y
observations per year, than take p
to equal 1/(Tn_y)
to obtain the T
-years return level.
egp.ll
returns the log-likelihood value.
egp.retlev
returns a plot of the return levels if plot=TRUE
and a matrix of return levels.
egp.ll(xdat, thresh, model, par)
egp.retlev(xdat, thresh, par, model, p, plot=TRUE)
Leo Belzile
Papastathopoulos, I. and J. Tawn (2013). Extended generalised Pareto models for tail estimation, Journal of Statistical Planning and Inference 143(3), 131–143, <doi:10.1016/j.jspi.2012.07.001>.
Gamet, P. and Jalbert, J. (2022). A flexible extended generalized Pareto distribution for tail estimation. Environmetrics, 33(6), <doi:10.1002/env.2744>.
set.seed(123)
xdat <- mev::rgp(1000, loc = 0, scale = 2, shape = 0.5)
par <- fit.egp(xdat, thresh = 0, model = 'gj-beta')$par
p <- c(1/1000, 1/1500, 1/2000)
# With multiple thresholds
th <- c(0, 0.1, 0.2, 1)
opt <- tstab.egp(xdat, th, model = 'gj-beta')
egp.retlev(xdat, opt$thresh, opt$par, 'gj-beta', p = p)
opt <- tstab.egp(xdat, th, model = 'pt-power', plots = NA)
egp.retlev(xdat, opt$thresh, opt$par, 'pt-power', p = p)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.