compute_marginal_likelihood | R Documentation |
compute_marginal_likelihood
Computes Marginal likeilhood for the GPC Model, when using Expectation Prop.
Used for as model evidence in order to compute optimal parameters/ hyperparameters for the model. Implemented so far
only for the GaussKernel kernel function. Might be expanded in the future.
compute_marginal_likelihood(X, kernel_param, class_labels)
X |
(matrix) : The design matrix of (S/D) EC curves |
kernel_param |
(float) : Bandwidth parameter for the Gaussian Kernel |
class_labels |
(vector) : vector of +1,-1 of class labels. |
log_Z (float): the EP log likelihood given the parameters.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.