knitr::opts_chunk$set(collapse=TRUE,comment="#>",fig.width=6,fig.height=6) library(EMISR)
The vignette illustrates the use of the EMISR package to analyse data for a marine protected area (MPA).
The SpatialPolygonsDataFrames mpa1 and mpa2 contain the marine protected areas of the world.
To select one MPA:
wdpaid<-555540558 mpa<-mpa2[mpa2@data$wdpaid==wdpaid,] proj4string(mpa)<-CRS("+proj=longlat +datum=WGS84")
Then plot it:
#build a terrestrial polygon around the mpa mappoly<-map("worldHires",fill=T,plot=FALSE,xlim=c(extent(mpa)@xmin-1,extent(mpa)@xmax+1),ylim=c(extent(mpa)@ymin-1,extent(mpa)@ymax+1)) IDs <- sapply(strsplit(mappoly$names, ":"), function(x) x[1]) coast<- map2SpatialPolygons(mappoly, IDs=IDs, proj4string=CRS("+proj=longlat +datum=WGS84")) #plot at global scale map("worldHires",col="light grey",fill=T) points(coordinates(mpa),cex=2,col="blue",pch="+") title(paste("MPA",mpa@data$wdpaid,"(",mpa@data$name,")","in",mpa@data$country),cex=.5) #local plot plot(mpa,xlim=c(extent(mpa)@xmin-1,extent(mpa)@xmax+1),ylim=c(extent(mpa)@ymin-1,extent(mpa)@ymax+1),axes=T,col="red") map("worldHires",add=T,col="light grey",fill=T) plot(mpa,add=T,col="blue") title(paste("MPA",mpa@data$wdpaid,"(",mpa@data$name,")","in",mpa@data$country),cex=.5)
The function mpaextract download the requested parameter on EMIS (european waters, high spatial resolution) or GMIS
(global scale, but only available at 4 and 9 km).
#extraction of the MODIS sea surface temperature at 2 km between 2009 and 2012 on the Pantelleria marine protected area (Italy) pantelleria_sst<-mpaextract("EMIS_T_SST","2km","2009-01","2012-12",555540558) #extraction of the MODIS sea surface temperature at 2 km between 2009 and 2012 on the Pantelleria marine protected area (Italy) pantelleria_chl<-mpaextract("EMIS_A_CHLA","2km","2009-01","2012-12",555540558)
Then the extracted parameters can be processed in two ways:
mpaprocessplt does this graphical processing. plt<-mpaprocessplot(imgs=pantelleria_sst,mpa=pantelleria_mpa,name="EMIS_T_SST",unite="oC",logscale=FALSE) #map of the whole series plt[[1]]+latticeExtra::layer(sp.polygons(coast,fill="grey",col="grey"))+latticeExtra::layer(sp.polygons(pantelleria_mpa)) #map of the average SST plt[[2]]+latticeExtra::layer(sp.polygons(coast,fill="grey",col="grey"))+latticeExtra::layer(sp.polygons(pantelleria_mpa)) #map of the climatology plt[[3]]+latticeExtra::layer(sp.polygons(coast,fill="grey",col="grey"))+latticeExtra::layer(sp.polygons(pantelleria_mpa)) #boxplot of the climatology plt[[4]]
mpaprocessstat function. See the help of this
function for the details of the statistical analysis done. A graphic with the time series decomposition of the
parameter values averaged on the MPA area is given.datstat<-mpaprocessstat(imgs=pantelleria_sst,mpa=pantelleria_mpa,name="EMIS_T_SST",unite="oC") #the statistics datstat[[1]] #time series decomposition datstat[[2]]
-the function mpaprocess calls successively the functions mpaextract,mpaprocessplt and mpaprocessstat and gives
all the outputs (plot and statistics) in a list.
pltstat<-mpaprocess(name = "EMIS_A_CHLA", resolution = "4km", startdate = "2009-01", enddate = "2012-12", wdpaid = 555540558)
Results can be combine with more than one parameters repeating extraction and analysis changing the name of the parameters.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.