Description Usage Arguments Value Examples
View source: R/spline_multi_2.R
Identification of annual bloom descriptors dates based on smoothing splines for all the species of the dataframe. The function automatically exludes those years containing less than 75% of the possible observations for the temporal scale considered.
1 2 3 4 5 6 7 8  | spline_multi_2(
  x,
  ab_treshold = 0.75,
  obs_year = 2,
  s_param = 0.35,
  t_scale = 52,
  control = 0
)
 | 
x | 
 a dataframe having the first 7 columns named as "location", "station", "date", "year", "month", "week", "day", other columns corresponds to the species columns  | 
ab_treshold | 
 quantile of the positive abundance distribution (default 0.75)  | 
obs_year | 
 minimum number of samples for each year in which the species shows an abundance>0 (default 2)  | 
s_param | 
 the smoothing parameter corresponding to the spar parameters of the smooth.spline function (default 0.35).  | 
t_scale | 
 temporal scale resolution of the data, 52 for weekly data, 12 for monthly data (default 52)  | 
control | 
 control the flexibility of the function (default 0)  | 
a dataframe containing the species names, the annual time vector, the value vector and info a character vector with 'Start', 'Max' and 'End' for the seasonal peak and NA for the other date
1 2 3 4 5 6 7  | ## Not run: 
  data("phytopknar")
   phytopknar_ret <- ret_time(phytopknar)
   phytopknar_ret_ord <- phytopknar_ret %>% dplyr::select(location,station,date,year,month,week,day,everything())
   spline_multi_2(phytopknar_ret_ord,ab_treshold=0.75,obs_year=2,s_param=0.35,t_scale=52,control=0)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.