gamPlotDispSeason: Plot censored gam fits vs. time

View source: R/gamPlotDispSeason.R

gamPlotDispSeasonR Documentation

Plot censored gam fits vs. time

Description

Plot censored gam fits vs. time

Usage

gamPlotDispSeason(
  gamResult = gamResult,
  analySpec = analySpec,
  fullModel = 2,
  seasAvgModel = 2,
  seasonalModel = 2,
  diffType = "regular",
  obserPlot = TRUE,
  interventionPlot = TRUE,
  seasAvgPlot = TRUE,
  seasAvgConfIntPlot = TRUE,
  seasAvgSigPlot = TRUE,
  fullModelPlot = TRUE,
  seasModelPlot = TRUE,
  BaseCurrentMeanPlot = TRUE,
  adjustedPlot = FALSE,
  gamSeasonFocus = TRUE
)

Arguments

gamResult

output from procedure gamTest

analySpec

analytical specifications

fullModel

GAM # for displaying full GAM (e.g., 0, 1, 2)

seasAvgModel

GAM # for displaying seasonally average GAM

seasonalModel

GAM # for displaying seasonal GAM

diffType

plot predicted baseline mean ('regular') or adjusted baseline mean ('adjusted')

obserPlot

logical field indicating whether to plot observations

interventionPlot

logical field indicating whether to plot interventions (e.g., method changes)

seasAvgPlot

logical field indicating whether to plot seasonal average GAM

seasAvgConfIntPlot

logical field indicating whether to plot confidence interval for seasonal average GAM

seasAvgSigPlot

logical field indicating whether to plot significant increasing and decreasing trends for seasonal average GAM

fullModelPlot

logical field indicating whether to plot full GAM

seasModelPlot

logical field indicating whether to plot seasonal GAM

BaseCurrentMeanPlot

logical field indicating whether to plot baseline and current mean

adjustedPlot

logical field indicating whether to plot adjusted model

gamSeasonFocus

logical field indicating whether to plot focus on season mean

See Also

gamPlotDisp

Examples

## Not run: 
# Specify parameter and station to analyze
dep        <- 'do'
stat       <- 'CB5.4'
layer      <- 'B'

# Prepare data and set up specifications for analysis
dfr <- analysisOrganizeData (dataCensored)
df        <- dfr[[1]]
analySpec <- dfr[[2]]

# Apply gamTest 
gamResult <- gamTest(df, dep, stat, layer, analySpec=analySpec)
gamPlotDisp(gamResult = gamResult, analySpec = analySpec,
            fullModel = 2, seasAvgModel = 2, seasonalModel = 2,
            diffType = "regular", obserPlot = TRUE, interventionPlot = TRUE,
            seasAvgPlot = TRUE, seasAvgConfIntPlot = FALSE,
            seasAvgSigPlot = FALSE, fullModelPlot = TRUE, seasModelPlot = TRUE,
            BaseCurrentMeanPlot = FALSE, adjustedPlot = FALSE)

# Apply gamTestSeason
gamResult2 <- gamTestSeason(df, dep, stat, layer, analySpec=analySpec,
                            gamSeasonPlot = c("7/15-8/15", "purple", "range"))
gamPlotDispSeason(gamResult = gamResult2, analySpec = analySpec,
                  fullModel = 2, seasAvgModel = 2, seasonalModel = 2,
                  diffType = "regular", obserPlot = TRUE, interventionPlot = TRUE,
                  seasAvgPlot = TRUE, seasAvgConfIntPlot = FALSE,
                  seasAvgSigPlot = FALSE, fullModelPlot = FALSE, seasModelPlot = FALSE,
                  BaseCurrentMeanPlot = TRUE, adjustedPlot = FALSE, gamSeasonFocus = TRUE)

## End(Not run)

leppott/baytrends documentation built on Nov. 2, 2024, 6:42 p.m.