Description Usage Arguments Details Inverted Wishart parametrization (Press) References See Also
Computes the pdf p_X(x) by knowing x^(-1)
1 | diwishart_inverse(X_inv, df, Sigma, logd = FALSE, is_chol = FALSE)
|
X_inv |
inverse of X (the data) |
df |
degrees of freedom of the Inverted Wishart |
Sigma |
scale matrix of the Inverted Wishart |
logd |
if TRUE, return the log-density |
is_chol |
if TRUE, Sigma and X_inv are the upper Cholesky factors of Sigma and X_inv |
Computes the density of an Inverted Wishart (df, Sigma) in x, by supplying (x^(-1), df, Sigma) rather than (x, df, Sigma). Avoids a matrix inversion.
Uses \insertCitePress2012Appliedbayessource parametrization.
X ~ IW(v, S)
with S is a p x p matrix, v > 2p (the degrees of freedom).
Then:
E[X] = S/(n - 2(p + 1))
Other C++ functions:
chol2inv()
,
dmvnorm()
,
inv_Cholesky_from_Cholesky()
,
inv_sympd_tol()
,
inv_triangular()
,
isCholeskyOn()
,
ldet_from_Cholesky()
,
logCummeanExp()
,
logCumsumExp()
,
logSumExpMean()
,
logSumExp()
,
marginalLikelihood_internal()
,
rmvnorm()
,
rwish()
Other statistical functions:
diwishart_inverse_R()
,
diwishart()
,
dmvnorm()
,
dwishart()
,
riwish_Press()
,
rmvnorm()
,
rwish()
Other Wishart functions:
diwishart_inverse_R()
,
diwishart()
,
dwishart()
,
get_minimum_nw_IW()
,
riwish_Press()
,
rwish()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.