Description Usage Arguments Details Author(s) See Also
The 'tidyms' package implements tidy principles as defined in the tidyverse packages to omics-type data classes, with (currently at least), an emphasis on quantitative proteomics data.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ## S3 method for class 'eSet'
arrange(.data, ...)
## S3 method for class 'eSet'
filter(.data, ...)
## S3 method for class 'eSet'
group_by(.data, ..., add = FALSE)
## S3 method for class 'eSet'
select(.data, ...)
## S3 method for class 'Grouped_eSet'
summarise(.data, ...)
## S3 method for class 'eSet'
as_tibble(x, ..., fcols = fvarLabels(x))
|
.data |
An object of class MSnbase::MSnSet. |
... |
Expressions evaluated in the context of the object's
feature and sample variable and passed to the |
add |
As in the original 'dplyr::group_by'function, when ‘add = FALSE’, the default, 'group_by()' will override existing groups. To add to the existing groups, use 'add = TRUE'. |
x |
An object of class |
fcols |
Feature variables to be added. Default is to add all
(i.e. |
The vignette provides additional details and examples.
See the original 'dplyr' manual pages for details.
Maintainer: Laurent Gatto laurent.gatto@uclouvain.be
Useful links:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.