tidies: A Grammar of Data Manipulation for Quantitative Proteomics

Description Usage Arguments Details Author(s) See Also

Description

The 'tidyms' package implements tidy principles as defined in the tidyverse packages to omics-type data classes, with (currently at least), an emphasis on quantitative proteomics data.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
## S3 method for class 'eSet'
arrange(.data, ...)

## S3 method for class 'eSet'
filter(.data, ...)

## S3 method for class 'eSet'
group_by(.data, ..., add = FALSE)

## S3 method for class 'eSet'
select(.data, ...)

## S3 method for class 'Grouped_eSet'
summarise(.data, ...)

## S3 method for class 'eSet'
as_tibble(x, ..., fcols = fvarLabels(x))

Arguments

.data

An object of class MSnbase::MSnSet.

...

Expressions evaluated in the context of the object's feature and sample variable and passed to the dplyr functions. Ignored in as_tibble,MSnSet.

add

As in the original 'dplyr::group_by'function, when ‘add = FALSE’, the default, 'group_by()' will override existing groups. To add to the existing groups, use 'add = TRUE'.

x

An object of class MSnSet.

fcols

Feature variables to be added. Default is to add all (i.e. fvarLabels(x)). Use NULL to add none.

Details

The vignette provides additional details and examples.

See the original 'dplyr' manual pages for details.

Author(s)

Maintainer: Laurent Gatto laurent.gatto@uclouvain.be

See Also

Useful links:


lgatto/tidies documentation built on May 11, 2020, 8:40 a.m.