The model that will be trained is a r attr(modelSettings$param,'settings')$name
that uses the PatientLevelPrediction
function r modelSettings$fitFunction
to fit the model.
if(modelSettings$fitFunction == "fitCyclopsModel"){ parameters <- data.frame( name = names(modelSettings$param), value = unlist( lapply(modelSettings$param, function(x) paste(names(x), x, collapse = '-', sep=':')) ) ) settings <- data.frame( name = names(attr(modelSettings$param,"settings")), value = unlist( lapply( attr(modelSettings$param,"settings"), function(x) paste0(names(x), x, collapse = ':', sep=' ') ) ) ) row.names(settings) <- NULL } else{ parameters <- do.call('rbind', lapply( modelSettings$param, function(x){ unlist(lapply(x, function(x) paste0(x, sep=' ', collapse=':'))) }) ) settings <- data.frame( name = names(attr(modelSettings$param,"settings")), value = unlist( lapply( attr(modelSettings$param,"settings"), function(x) paste0(names(x), x, collapse = '-', sep='') ) ) ) row.names(settings) <- NULL }
Cross-validation settings
The cross validation settings are to use r splitSettings$nfold
folds in the training data that are partitioned using the r attr(splitSettings,"fun")
function and consist of r splitSettings$train*100
\% of the complete data. The seed used for splitting the data is r splitSettings$seed
.
Hyper-parameter search
The hyper-parameters investigated while fitting the model are listed below. The combination of hyper-parameters that obtains the highest AUROC value in the training data via cross validation will be uses in the final model.
print(knitr::kable(x = parameters, caption = paste('Hyper-parameters combinations searched to fit the model')))
Other settings
The other settings used to fit the model, such as seeds used for reproducibility, are:
print(knitr::kable(x = settings, caption = paste('Other model fitting settings')))
Internal validation
The model will be assessed internally using a test set that consists of r splitSettings$test*100
\% of the complete data.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.