estParams | R Documentation |
Estimate paramters from real datasets based on different distribution assumptions including NB (Negative Binomial), ZINB (Zero-Inflated Negative Binomial), ZIP (Zero-Inflated Poisson) and Dirichlet-Multinomial Distribution (DM). The microbial correlation network can be provided or estimated from different methods including 'MAGMA','CCLasso','SparCC','SPIEC-EASI' and 'CCREPE'.
estParams(otu_table,Sigma=NULL,
method=c('MAGMA','CCLasso','SparCC','SPIECEASI','CCREPE'),
distrib=c('NB','ZINB','ZIP','DM'))
x |
taxon abundance matrix with rows as samples and columns as taxa |
Sigma |
correlation matrix among taxa |
method |
methods for inferring Sigma if not provided |
distrib |
distribution can be specified as 'NB','ZINB','ZIP' or 'DM' |
A list containing all parameters: dispersion (phi
) and mean (mu
) for NB; dispersion (phi
), mean (mu
) and zero inflation probability (p0
) for ZINB; mean (mu
) and zero inflation probability (p0
) for ZIP; mean (mu
) and dispersion (phi
) for DM
## Not run:
library(powmic)
x=params$otu.mat
params=estParams(x,Sigma=NULL,method='CCLasso')
library(rMAGMA)
data(params)
params=estParams(x,Sigma=NULL,method='MAGMA',distrib='NB')
library(SpiecEasi)
params=estParams(x,Sigma=NULL,method='SPIECEASI')
params=estParams(x,Sigma=NULL,method='SparCC')
library(ccrepe)
params=estParams(x,Sigma=NULL,method='CCREPE')
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.