# estimated_variance <- function(object){
# UseMethod("estimated_variance")
# }
# estimated_variance_nb <- function(object = MASS::glm.nb(art ~ . , data = bioChemists)){
#
# y <- object$y
# X <- model.matrix(object)
#
# alpha <- 1/object$theta
# mu <- object$fitted.values
# beta <- object$coefficients
#
# essai <- sapply(1:length(beta), function(r){
# sum(
# X[,r]*mu*(1+alpha*y)/(1+alpha*mu)^2
# )
# })
# sqrt(1/essai)
#
# summary(object)$coefficients
#
# }
# estimated_variance_ZIP <- function(object = pscl::zeroinfl(art ~ . | ., data = bioChemists)){
#
# y <- object$y
# X <- model.matrix(object)
# Z <- X
#
# beta <- object$coefficients$count
# gamma <- object$coefficients$count
#
# if (is.null(object$offset$count)){
# mu <- exp(X %*% beta)
# } else{
# mu <- exp(log(offset$count) + X %*% beta)
# }
#
# if (is.null(object$offset$zero)){
# lambda <- exp(Z %*% gamma)
# } else{
# lambda <- exp(log(offset$zero) + Z %*% gamma)
# }
#
# se_beta <- sapply(1:length(beta), function(r){
# l1 <- X[,r]*X[,r]*mu*((mu-1)*lambda*exp(mu)-1)/(lambda*exp(mu)+1)^2
# l2 <- mu*X[,r]*X[,r]
# derivl <- sum(l1[y==0]) - sum(l2[y==0])
# })
# se_gamma <- sapply(1:length(gamma), function(r){
# l1 <- Z[,r]*Z[,r]*lambda*exp(mu)/(lambda*exp(mu)+1)^2
# l2 <- Z[,r]*Z[,r]*lambda/(lambda+1)^2
# derivl <- sum(l1[y==0]) - sum(l2)
# })
#
# 1/(-se_beta*nrow(X))
#
# summary(object)$coefficients
#
# }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.