knitr::opts_chunk$set(echo = TRUE) knitr::opts_chunk$set(message = FALSE) knitr::opts_chunk$set(warning = FALSE)
library(tablelight)
ols <- lm( Sepal.Length ~ Sepal.Width, data = iris )
light_table( object = ols, title = "My awesome OLS regression (iris data)", type = "html", dep.var.labels = "Sepal.Length", column.labels = NULL, stats.list = c("rsq","adj.rsq","n") )
print_html( light_table( object = ols, title = "My awesome OLS regression (iris data)", type = "html", dep.var.labels = "Sepal.Length", column.labels = NULL, stats.list = c("rsq","adj.rsq","n") ) )
data("bioChemists", package = "pscl") ols <- lm( art ~ phd, data = bioChemists ) glm <- glm( art ~ phd + ment, data = bioChemists, family = poisson() ) negbin <- MASS::glm.nb( art ~ phd + ment, data = bioChemists )
light_table( object = list(ols, glm, strip(negbin)), title = "Compare models on IRIS data", type = "html", dep.var.labels = "Article", column.labels = c("OLS","Poisson","MASS::NegBin"), stats.list = c("alpha","n","lln","bic","link"), add.lines = "This table compares several models" )
print_html( light_table( object = list(ols, glm, strip(negbin)), title = "Compare models using BioChemists data (pscl package)", type = "html", dep.var.labels = "Sepal.Length", column.labels = c("OLS","Poisson","MASS::NegBin"), stats.list = c("alpha","n","lln","bic","link"), add.lines = "This table compares several models" ) )
zip <- pscl::zeroinfl( art ~ phd + ment, data = bioChemists, dist = "poisson", link = "probit" ) zinb <- pscl::zeroinfl( art ~ phd + ment, data = bioChemists, dist = "negbin", link = "probit" )
light_table( object = lapply(list(glm, zip, zip, zinb, zinb),strip), modeltype = c("outcome", "outcome", "selection", "outcome","selection"), title = "Compare models using BioChemists data (pscl package)", type = "html", dep.var.labels = c("Non-zero inflated","ZIP","ZINB"), dep.var.separate = c(1,2,2), column.labels = c("Poisson","Selection","Outcome", "Selection","Outcome"), stats.list = c("alpha","n","lln","bic","link"), add.lines = "It is quite easy to make selection and outcome levels appear together" )
print_html( light_table( object = lapply(list(glm, zip, zip, zinb, zinb),strip), modeltype = c("outcome", "outcome", "selection", "outcome","selection"), title = "Compare models using BioChemists data (pscl package)", type = "html", dep.var.labels = c("Non-zero inflated","ZIP","ZINB"), dep.var.separate = c(1,2,2), column.labels = c("Poisson","Selection","Outcome", "Selection","Outcome"), stats.list = c("alpha","n","lln","bic","link"), add.lines = "It is quite easy to make selection and outcome levels appear together" ) )
n<-250 x1<-sample(c(0,1),n,replace=TRUE,prob=c(0.75,0.25)) x2<-vector("numeric",n) x2[x1==0]<-sample(c(0,1),n-sum(x1==1),replace=TRUE,prob=c(2/3,1/3)) z<-rnorm(n,0.5) # create latent outcome variable latenty<-0.5+1.5*x1-0.5*x2+0.5*z+rnorm(n,sd=exp(0.5*x1-0.5*x2)) # observed y has four possible values: -1,0,1,2 # threshold values are: -0.5, 0.5, 1.5. y<-vector("numeric",n) y[latenty< -0.5]<--1 y[latenty>= -0.5 & latenty<0.5]<- 0 y[latenty>= 0.5 & latenty<1.5]<- 1 y[latenty>= 1.5]<- 2 dataset<-data.frame(y,x1,x2) logit <- nnet::multinom(y ~ x1 + x2 + z, data=dataset)
light_table( logit, type = "html", dep.var.labels = "Outcome variable", column.labels = c("Low","Middle","High"), stats.list = c("n","lln"), covariate.labels = c("Variable 1","Another variable","A third variable"), omit = "(Intercept)", add.lines = "With multinomial logit, dependent variable modality" )
print_html( light_table( logit, type = "html", title = "Different output for nnet::multinom regressions", dep.var.labels = "Outcome variable", column.labels = c("Low","Middle","High"), stats.list = c("n","lln"), omit = "(Intercept)", covariate.labels = c("Variable 1","Another variable","A third variable"), add.lines = "With multinomial logit, dependent variable modality" ) )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.