##
## FIRC model methods
##
## This file has implementation of the FIRC model (both with pooled variances
## across Tx and Co units and unpooled where Tx and Co get their own variance
## terms)
##
## The unpooled functions are taken from Catherine's implementation of Weiss et
## al methods.
##
# # For the debugging code to get the DGP files
# localsource = function( filename ) {
# source( file.path( dirname( rstudioapi::getActiveDocumentContext()$path ), filename ) )
# }
# # Testing
# if ( FALSE ) {
# localsource( "multisite_data_generators.R")
# dat = catherine_gen_dat( 0.2, 1.0, 30, 50 )
# head( dat )
# describe_data( dat )
# #debug( estimate_ATE_FIRC )
# estimate_ATE_FIRC( Yobs, Z, sid, data=dat )
# dat$X = dat$Y0 + rnorm( nrow(dat) )
# estimate_ATE_FIRC( Yobs, Z, sid, data=dat, control.formula = ~ X )
# dat = catherine_gen_dat( 0.2, 0, 30, 50 )
# head( dat )
# describe_data( dat )
# #debug( estimate_ATE_FIRC )
# estimate_ATE_FIRC( Yobs, Z, B, dat )
# }
# if ( FALSE ) {
# localsource( "multisite_data_generators.R")
# dat = catherine_gen_dat( 0.2, 0.0, 30, 50 )
# describe_data( dat )
# head( dat )
# estimate_ATE_FIRC( Yobs, Z, sid, data=dat, pool=TRUE )
# dat = catherine_gen_dat( 0.2, 0.5, 30, 50 )
# describe_data( dat )
# estimate_ATE_FIRC( Yobs, Z, B, data=dat, pool=TRUE )
# }
# # Testing
# if ( FALSE ) {
# df = gen_dat_no_cov.n( n = 600,n.small = 6, J = 30, small.percentage = 0.7,tau.11.star = 0.2)
# # head( df )
# # describe_data( df )
# analysis.FIRC( Yobs, Z, B, df )
# }
# # Testing
# # This testing is based on the DGP for small sample simulations
# if ( FALSE ) {
# df = gen_dat_no_cov.n( n = 600,n.small = 6, J = 30, small.percentage = 0.7,tau.11.star = 0.2)
# # head( df )
# # describe_data( df )
# analysis.FIRC( df )
# }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.