# #
# # # Testing
# if ( FALSE ) {
# dat = catherine_gen_dat( 0.2, 0.2, 30, 50 )
# head( dat )
# fit.FIRC( dat )
# estimate.Q.confint( dat )
# # sanity check: same Q-statistic and same p-value?
# cTst = estimate.Q.confint( dat )
# cTst
# source( "detection_methods.R")
# qTst = analysis_Qstatistic( dat )
# qTst
# cTst$p.value
# qTst - cTst$p.value
# }
### Not run currently
## --------- Blending the MLM and the Q-statistic approach ---------
#
# # This is unfinished code trying to do the Q-statistic with the random effects
# # from a MLM.
# analysis_Q_MLM = function( data ) {
# # Fit MLM
# M0 = lme4::lmer( Yobs ~ 1 + Z * X + (1|B), data=data )
# tstat = lme4::fixef( M0 ) / arm::se.coef(M0)$fixef
# 2 * pnorm( - abs( tstat[["Z:X"]] ) )
# # Get EB estimates of sites
# beta.j = stuff
# # Get nominal SEs
# # Calculate Q
# q <- sum((bj - bbar)^2/vj)
# pval <- pchisq(q, df=(s-1),lower.tail=FALSE)
# pval
# }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.