View source: R/lsat_calc_trend.R
lsat_calc_trend | R Documentation |
This function evaluates and summarizes interannual trends in vegetation greenness for sample sites over a user-specified time period. Potential interannual trends in vegetation greenness are assessed using either (1; default) Mann-Kendall trend tests and Theil-Sen slope indicators after prewhitening each time series or (2) linear regression. The default trend assessment method relies on the zyp.yuepilon() function from the zyp package, which provides further details.
lsat_calc_trend(
dt,
si,
yrs,
yr.tolerance = 1,
nyr.min.frac = 0.66,
sig = 0.1,
method = "mk"
)
dt |
Data.table with columns including site, year, and the vegetation index of interest. |
si |
Spectral index for which to assess trend (e.g., NDVI). |
yrs |
A sequence of years over which to assess trends (e.g., 2000:2020). |
yr.tolerance |
The number of years that a site's first/last years of observations can differ from the start/end of the user-specified time period ('yrs') for a trend to be computed. |
nyr.min.frac |
Fraction of years within the time period for which observations must be available if a trend is to be computed. |
sig |
A p-value significance cutoff used to categories trends (e.g., 0.10) |
method |
Specify whether trends should be computed using Mann-Kendall tests ("mk"; default) or linear regression ("lm") |
A list that includes: (1) a summary message about the mean relative change across sample sites; (2) a data.table summarizing the number and percentage of sites that fall into each trend category; (3) a data.table with trend statistics for each sample site.
data(lsat.example.dt)
lsat.dt <- lsat_format_data(lsat.example.dt)
lsat.dt <- lsat_clean_data(lsat.dt)
lsat.dt <- lsat_calc_spectral_index(lsat.dt, 'ndvi')
# lsat.dt <- lsat_calibrate_rf(lsat.dt, band.or.si = 'ndvi', write.output = F)
lsat.pheno.dt <- lsat_fit_phenological_curves(lsat.dt, si = 'ndvi')
lsat.gs.dt <- lsat_summarize_growing_seasons(lsat.pheno.dt, si = 'ndvi')
lsat.trend.dt <- lsat_calc_trend(lsat.gs.dt, si = 'ndvi.max', yrs = 2000:2020)
lsat.trend.dt
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.